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NONASSOCIATIVE NUMBER THEORY 

TREVOR EVANS, Emory University 

Introduction. In several papers I. M. H. Etherington has studied the algebra 
of exponents of the general element in a nonassociative linear algebra and he 

has called these systems logarithmetics. If the linear algebra does not satisfy any 

identities the corresponding logarithmetic bears a close resemblance to the 
natural numbers. In fact, in [3] Etherington has shown that the elements of this 
particular logarithmetic can be defined in terms of partitioned classes in com- 

plete analogy to the Frege-Russell definition of the natural numbers as classes 
of classes. It is not too surprising then that we can also characterize this logarith- 
metic by a set of postulates analogous to the Peano postulates for the natural 
numbers. We do this in Section 1 and develop the basic properties of the 
logarithmetic in a manner paralleling the usual development of the natural 
numbers. * 

We proceed to study the number theory of this logarithmetic. Several of the 
theorems in Section 1 and 2 including the “fundamental theorem of arithmetic” 
have been obtained by Etherington, although our derivations are in general 
quite different. Some of the standard theorems and conjectures of ordinary num- 

ber theory have trivial analogues in this new number theory but a little more 

effort is needed to prove Fermat’s Last Theorem. 
By analogy with the extension of the natural numbers to the ring of positive 

and negative integers, we extend the logarithmetic to a system in which sub- 
traction is always possible. The system so obtained is the left neoring of Bruck’s 
recent paper [2]. The fundamental theorem of arithmetic has to be proved anew, 
Since there are many more primes than just the original primes and their asso- 

ciates. In this new system we are also able to introduce the analogues of finite 
arithmetics and congruence by using some of the results of [6]. 

We conclude by mentioning a few problems and possible directions for fur- 
ther work. 

1. Peano-like postulates for the nonassociative natural numbers. Peano’s 

postulates characterize the natural numbers as a set closed under a unary 

Operation and satisfying certain other conditions. If we replace the unary opera- 
tion by a binary operation and make the corresponding changes in the postu- 
lates we obtain the following system. 

Undefined terms: The set of nonassociative natural numbers, the elements 

of which we will just call numbers;f the binary operation of addition. 

* See, for example, the first few pages in [8]. 
t We will always use the words “positive integer” in referring to the natural numbers of ordi- 

ary arithmetic. 
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Postulates: 

(i) 1 is a number, 

(ii) to every pair of numbers a, b there corresponds a third called the sum 
of a and b and written a+), 

(iii) there are no numbers a, b such that a+)=1, 

(1) (iv) if the numbers a, db and c, d are such that a+b =c+d, then a=c and 
b=d, 

(v) if a set of numbers contains 1, and if whenever it contains numbers 
a, 6 then it contains a+), then the set contains all numbers. 
(The principle of nonassociative induction.) 

Thus our numbers are 1, 1+1, 1+(1+1), (1+1)+1, 1+(1+(1+1)),---. 

By postulate (v), every number except 1 can be expressed as the sum of two 
other numbers and postulate (iv) implies that this can be done in only one way. 

Also, by postulate (iv), addition is in general noncommutative since a+b =b+a 

implies a=b. Following Etherington, we will denote 1+1 by 2, 1+(1+1) by 3, 

1+(i+(1+1)) by 4,---. 

As an example of nonassociative induction we prove: 

THEOREM 1. For all numbers a, b, axa+b. 

Proof. Let S be the set of all values of a such that a#a+5 for any b. S con- 

tains 1 by postulate (iii). Let m, GS. If there exists a number 5 such that 

m+n=(m-+n)+b, then m=m-+n by postulate (iv), in contradiction to the 

assumption that mG S. Thus m+n€S and so by the principle of nonassociative 

induction, S contains all numbers. 

An immediate consequence of this theorem is that there are no numbers 

a, b, c such that a+(b+c) =(a+b)+c. That is, addition is completely nonasso- 

ciative. Because of the lack of commutativity and associativity in addition, in- 
troducing an order or partial order into the system does not seem to be very 
fruitful. One fairly reasonable definition is as follows. We first define “well- 

formed part” of a number by (i) the only well-formed part of 1 is 1 itself, (ii) if 

a=b-+c, the well-formed parts of a are a itself and the well-formed parts of b 
and c. Now we define x<y if x occurs as a well-formed part of y, and x<y if 
x<y but xy. With these definitions we get a partial ordering* between num- 
bers but unfortunately x <¥y does not imply x+2<y+2z or 2+x<z+y. However, 

with the definition of multiplication given below, x <y does imply z-x<z-y. 

We introduce multiplication a-b (or ab) into our number system by 

* The partial order for N can be extended to a complete ordering as was pointed out to me re- 
cently in conversation by R. H. Bruck and D. R. Hughes. Define a<b in N if (i) |a| <|0| ; (ii) || 

but a: <b;, where a =a; +42, b +5»; (iii) = |b] and a,;=b;, but a2<b:. Unlike the partial 

ordering given above, this ordering has all the usual properties. Another complete ordering of N 

is obtained by interchanging a; and az, b; and 0: in (ii), (iii). 
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(2) (i) a-1 =a, (ii) a-(6+c¢c) =a-b+a-c. 

Clearly this defines a product between every pair of numbers. We leave to the 

reader the proof of the next two theorems. Nonassociative induction is used on 

a in the first and c in the second. 

THEOREM 2. 1-a=a for all numbers a. 

THEOREM 3. (ab)c=a(bc) for all numbers a, b, c. 

Some examples of calculation in our system are 

2:2=24+2, (14+ 1), 

(1+), 

((3 + 2) + (3 + 2)) + (3 + 2) = ((1 + 2) + 2)-(2 + 1). 

As an immediate consequence of the definition of multiplication the left- 

distributive law is satisfied. The cancellation properties of multiplication are 

given in the following theorems. 

THEOREM 4. If xa=ya, then x=y. 

Proof. This is true for a=1. Assume that it is true for a=m and a=n. Now, 
if x(m+n) =y(m-+n), expanding each side we get xm+xn =ym-+-yn. By postu- 
late (iv), xm =ym, and so by our inductive hypothesis, x = y. Thus the theorem 

is true for a= m- +n, and so for all values of a by nonassociative induction. 

In order to prove the other cancellation law it is useful to introduce the con- 

cept of length of a number m. We mean by this the positive integer obtained from 
n by regarding + in the expression for n as the addition of ordinary arithmetic. 

We will denote the length of by ||. The following relations hold. 

(3) |[m+n| =|m| + |n|,  |mn| = |m|-|n], 
‘., m-| m| is a homomorphism onto the positive integers. 

THEOREM 5. If ax=ay, then x=y. 

Proof. We use induction on x. When x is 1, consideration of the lengths of 

the two sides of the equation a=ay shows that y=1. Consider the equation 
a(m-+n) =ay. By the preceding sentence y cannot be 1 and so y=s-++# for some 
numbers s, ¢t. Then a(m+mn)=a(s+t) or am+an=as-+at. By postulate (iv), 

am=as and an=at. 

Hence, if am=as implies m=s, and an =at implies n =t, then a(m+n) =ay 

implies m+n =~y. The theorem follows by nonassociative induction. 

We now have a fairly complete picture of our nonassociative number sys- 

tem. Every number in it can be obtained from 1 by a finite number of non- 
associative additions. Multiplication, u(1)-v(1), of two of these numbers satis- 

fies u(1)-v(1)=v(u(1)), in complete analogy with multiplication in ordinary 

| 
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arithmetic. Addition satisfies the uniqueness law, a+b =c+d implies a=c and 

b=d. Multiplication is associative, has 1 as an identity, is connected with addi- 

tion by the left-distributive law, and satisfies the usual cancellation laws. In 

the language of modern algebra, this system can be described as additively the 
free groupoid generated by 1 with a multiplication introduced by a-b=b¢, 
where ¢, is the endomorphism of the groupoid determined by mapping 1 into a. 

From now on, we will denote this system by N and call it nonassociative 

arithmetic. 

2. Number theory. We can now proceed with the development of the num- 
ber theory of NV. In view of the noncommutativity of multiplication we need the 
concepts of left-factor and right-factor. If a=b-c, then 6 is called a left-factor of 
a and ¢ is called a right factor of a. If b, c are not equal to 1 or a, we call them 

proper \eft- or right-factors. A number, other than 1, having no proper left- 
factors is called a prime number. Clearly, a prime number has no proper right- 
factors either. A striking property of factors in nonassociative arithmetic is 
given in the next theorem. 

THEOREM 6. If p is a proper left-factor of a, and a=b-+-<c, then p is a left-factor 

of b and a left-factor of c. 

Proof. Since pqg=a for some g and pa, then g#1. Thus g=m-+n for some 
m,n. Then p(m-+n) =a and so pm+pn=b+-<c. By postulate (iv), pm =b, pn=c. 

That is, p is a left-factor of both 6 and c. We note that this theorem is not true 
if we consider right-factors instead of left-factors. 

In ordinary arithmetic we have the theorem that if a prime is a factor of a 
product it is a factor of one of the numbers. The following theorem is similar. 

THEOREM 7. If the prime p is a left-factor of the product a-b, where a is not 1, 

then it is a left-factor of a. 

Proof. We use nonassociative induction on b. For )=1 the theorem is cer- 
tainly true. Now if it is true for m, n and if b=m-+n, then p is a left-factor of 

a(m+n)=am-+an. But p¥a(m-+n) since p is prime and so by Theorem 6, 
p is a left-factor of am. Hence ? is a left-factor of a by our inductive hypothesis. 

The corresponding result for right factors is also true, but it is most easily 

obtained as a consequence of the following theorem. 

THEOREM 8. (The fundamental theorem of nonassociative arithmetic.) There is 

only one way in which a number can be written as a product of primes. 

Proof. Let + Diets be two products of primes such 
that * Gitte By Theorem 7, p11; is a left-factor of qj: 
and since qj1; is prime, Pj1; Then, by Theorem 5, pj2) 
Continuing this, we get =Qis1, - There must be the same num- 

ber of factors in each product since otherwise we would eventually have 1 ex- 
pressed as a product. 
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CorROLLARY. If the prime p is a right factor of the product a-b, where b is not 1, 

then it is a right-factor of b. 

For a:b when written asa product of primes must end with p by the theorem, 
and since this product of primes can be obtained by writing a and b separately 

as products of primes, p must be the last factor in the expression of b as a product 
of primes. 

The concept of factor can be extended by defining m to be a factor of a if 

a=smt. The concept of mutually prime in ordinary arithmetic has several 
analogues in nonassociative arithmetic. Two numbers, a, b are mutually left- 
prime if they have no common proper left-factor, mutually right-prime if they 

have no common proper right-factor, mutually prime if one is not a factor of the 
other, and no proper right-factor of one is a left-factor of the other. It is easy 

to verify the following generalizations of Theorems 6, 7: 

(i) If m is a proper factor of a, not a right-factor, and a=b+c, then m isa 

factor of b and of c, (ii) let m be a factor of a-b; if m, b are mutually prime, then 

m is a factor of a, or if a, m are mutually prime, then m is a factor of b. 

If a, b are two mutually left-prime numbers then a, a+b, (a+6)+6, ((a+0) 

+b)+b, -- + have no nontrivial left-factors by Theorem 6, and so are all prime. 

Hence there are an infinite number of primes. An example of such an infinite 
sequence of primes is 2, 3, 4,---. The twin primes conjecture of ordinary 
arithmetic has a trivial generalization for, if k is any number, there exists an 

infinite number of pairs of primes of the form n, +k. The analogue of Gold- 

bach’s conjecture fails to hold by virtue of postulate (iv). However, another 
famous conjecture of ordinary arithmetic is provable in nonassociative arith- 
metic. In fact, an even stronger result than the original is true. 

THEOREM 9. (Fermat's Last Theorem). There are no numbers x, y, 2 such that 

xlnltylnl=gl"! for any positive integral |n| greater than |1|. 

Proof. We obtain a proof by contradiction. Let x, y, z be numbers such that 
xinl4-ylnl =gl"l, where || is a positive integer greater than |1|. We note that 
(i) neither x nor y can be 1 since this would imply that x!"!+-!"! is a prime, 

Since || is greater than | 1], s!"! has z as a left-factor and so by Theorem 6, 
both x!"! and y!"! have z as a left-factor. Let x and z be expressed as a product 

of primes in the form x= Piet, Z=Q119i21 * Then, since zu =x!"! 
for some number u, we have =PiPi21 * Where v=x!"—"!, 

By Theorem 7, Now |s <|t| , for otherwise 
|z| <|x], in contradiction to |x| Hence, z=xa for some a 
and, similarly, z= yb for some b. 

We have then |z| =|x]|-|a|, |z| =|y|-|5]. Substituting in 
=|z|!"! for |x| and |y], we get |1|/|a|'*!+|1| /|b|'*!=1. This is a contradic- 
tion since for |m| >|1|, no positive integers |a|, |b] satisfy such a condition. 
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3. Introduction of “negative integers.” In ordinary arithmetic, zero and the 
negative integers are introduced in order that subtraction always be possible. 

The same problem arises naturally in nonassociative arithmetic also. In N, sub- 
traction can be defined between some pairs of numbers as follows. If m=p+n 
we can introduce the operation of right-subtraction m—mn between m and n 

and write m—n=p. If m=n-+q, we can introduce the operation of left-subtrac- 
tion* —n-+m between m and m and write —n+m=g. With these definitions 
we get the following properties 

(m+n) —n=m, n+(—n+m) =m, 

(4) 
(m—n)+n=m, —n+ (n+ m) =m. 

Clearly these are properties we would like subtraction to have, and ina 

general nonassociative system they are the most for which we can hope. The 

problem now is to find a system containing N and such that left- and right- 
subtraction is possible between every pair of elements. More specifically, we 
want a system with two operations +, -, and such that (i) the equations 

a+x=b, y+a=b have unique solutions, (ii) multiplication is associative, (iii) 
the multiplicative identity 1 generates the system, (iv) the cancellation laws 

hold, (v) the left-distributive law holds, (vi) with respect to the operation +, 

1 generates a subsystem isomorphic to N. Such a system is of the type discussed 

by Bruck in a recent paper [2] and called by him a left neoring. However, there 
are many left neorings satisfying the above conditions. We will choose the one 
which seems to be the most natural extension of N. 

Let L be the free monogenic loopt generated by 1 with the operation written 
as addition. This is the nonassociative analogue of the additive group of integers. 
The mapping 1—a where a is any element of L determines an endomorphism 
¢. of L and we can introduce a multiplication into L by defining a-b=bd,. We 
will denote the resulting system by J and call it the left neoring of nonassocia- 

tive integers. In this section “number” will refer to an element of I. 

An immediate consequence of this definition of multiplication is that a(b+c) 
=ab+ac for all a, 6, c. In addition, as is shown in [2], multiplication is associa- 
tive and the two cancellation laws of multiplication are satisfied. Since, addi- 

tively, I is a loop, we do have the required subtraction properties, and the sub- 
system of J consisting of 1, 1+1, 1+(1+1), ---, etc. is isomorphic to N. We 

refer the reader to [2], [6], for a discussion of the algebraic structure of J. We 
wish to introduce here some analogues of ordinary number theory in J. For this 

reason we will use another approach to the system which has the advantage of 

an explicit representation of its elements. 

Consider all expressions which can be generated by 0 and 1 with the three 

* Note that the — and + here do not exist independently, but are each part of the notation 

for the binary operation of left-subtraction. 
t For a discussion of free loops see [1], [4], [5]. 
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binary operations of addition a+, left subtraction —a+5, and right subtrac- 
tion a—b. We call such expressions numerical expressions. An example is 

(4+(0—1)) —((1+1)+(1+(—2+1))), where 2, 4 have the usual meaning as 

abbreviations. 
Two numerical expressions are equal if and only if their equality follows 

from the following 

(i) 

(ii) a-—-a=-a+a=0, 

(iii) —0+a=a, 

(iv) (¢+b)-b=a, =a, 
(v) (@-—-b)+b=a, 

(vi) a—(-b+a)=b, -(a-—b)+a=8, 

(5) 

where a, b are numerical expressions. 

Clearly (i), (ii), (iii) are properties we wish 0 to have, (iv) and (v) are the 

properties of subtraction we already have in N. Equations (vi) are actually con- 

sequences of the preceding equations and we list them merely for their useful- 

ness in computation. We remark that (—a-+3) is the unique solution of a+x=) 
and 6—a is the unique solution of y+a=5. 

Our nonassociative integers are now defined as the classes of equal numerical 
expressions. A multiplication is introduced into the system by u(1) -v(1) =v(u(1)) 

where u, v are numerical expressions. 

That this system is J is a consequence of the results of [4], [5]. Another 
result from [4, Theorem 2.2], shows that in each class of equal numerical ex- 
pressions there is a unique expression of shortest length (here “length” refers to 
the number of 0’s and 1’s in the expression). Such a shortest numerical expression 
is characterized by the property that there is no application of equations (5) to 
the expression which will shorten it. We will call this the normal form of the 

class of equal numerical expressions and refer the reader to [4], [5] for a full 
discussion of these ideas. 

The following examples illustrate the rules of computation in J and some 
specific computations. 

(i) a-i=1-a=4a, 

by the definition of multiplication, 
(iii) a-(m — n) = a-m—a-n, 

(iv) a-(—m +n) = — a-m-+ a-n, 

(6) (v) 

(vi) 0-@ = 0, by induction on the length of a, 

(vii) a-(0—1)=0-—a, a-(-1+0)=—a+0, 

: 
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(viii) (0 — 1)-(—-1+ 0) = @— 1) + (0— 1)-0= 0-1) +0 =1, 

(ix) (1 — 2)-(( — 1) + 2) = (1 — 2)-(0—- 1) + (1 — 2)-(1 + 1) 

= (0 — (1 — 2)) + (1 — 2) + (1 — 2)). 

The discussion of the number theory of J is complicated by the existence of 

units. As usual we define a unit to be an element possessing a multiplicative 

inverse. In the ring of integers of ordinary arithmetic there are only two units 

but the left neoring J contains an infinite number. 

We will call the elements 0—1, 0—(0—1), 0O—(0—(O—1)), -- - the first, 

second, third,--- right negatives of 1 and similarly, —1+0, —(—1+0)+0, 

—(—(—1+0)+0,--- the first, second, third,--- left negatives of 1. It is 

easily verified from equations (5) and (6) that the product of the mth left nega- 
tive and nth right negative is 1. 

It is not quite so easy to show that these are the only units in J. We recall 
that the product of two elements u(1), v(1) of I is defined by u(1) -v(1) =v(u(1)). 

Hence we have to show that the left- and right-negatives of 1 are the only ele- 

ments of J which satisfy v(u(i))=1. This is an immediate consequence of 

Lemma 2 in [5]. 
Since (0—1)?=0—(0—1), and (—1+0)? 

= —(—1+0)+0, (—1+0)*= —(—(—1+0)+0)+0, - - - , the units of J are ex- 
actly the powers of 0—1. 

We collect these results as a theorem. 

THEOREM 10. The multiplicative group of units of I is the infinite cyclic group 

generated by O—1. 

As before 6 will be called a J/eft-factor of a if there exists an element c of I 
such that b-c=a. If neither } nor c is a unit and a0, we say that d is a proper 

left-factor of a. In the same way we define right-factor and proper right-factor. We 

note that any number is a factor of 0. Two numbers a, b in I will be called 

associates if xay=b where x, y are units. 

Lemma 1. If a, b are left- (right-) factors of each other, then they are associates. 

Proof. lf ax =b, by =a, then axy=a or xy =1. Hence x, y are units. The proof 
for right-factors is similar. 

If ais a left- (right-) factor of b and d is a right- (left-) factor of a, then a=) 
unless both a and 0 are units. A proof of this leans heavily on the results of [4], 

[5], and so we omit it. 

In ordinary arithmetic, the primes in the ring of integers are simply the 
original primes in the set of natural numbers multiplied by the units. This situa- 

tion does not carry over to nonassociative arithmetic. In fact, a rather compli- 

cated situation exists in J. We define, in the usual way, a prime number of I to 

be a number without proper factors. Then all the primes of N are primes in I. 
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We also have primes such as 0—(1+1) consisting of the product of the prime 
(1+1) in N and the unit 0—1. But other primes such as 1—(1+1) exist in J, 

not the product of a unit and a prime of N. In addition, there is a special sub- 

class of the primes of J with the property that no prime in this subclass can be 

written as a product of two numbers of shorter length. For want of a better 
name, we will call these special primes. The number (0—(1+1)) is a prime but 

it is not a special prime since 0—(1+1)=(1+1)-(0—1). However, (1+1) is a 

special prime and, more generally, all the primes of N are special primes in J. 

Examples of other special primes are (1—2), (1—3), (1-4), ---. 

We now state some theorems, giving only brief outlines of the proofs, which 

are basic in the further development of the number theory of J. 

THEOREM 11. Let a be an element of I represented by a numerical expression in 

normal form so that a has one of the forms m+n, m—n, —m-+n where m, n are 

numerical expressions. Then any proper left-factor of a is a left-factor of m and n. 

Proof. This corresponds to Theorem 6 for N. The proof proceeds by ordinary 

induction on the length of a, coupled with the fact that the representation of a 

number as a numerical expression in normal form is unique. 

THEOREM 12. If the prime p is a left-factor of the product ab, where a1, b +0, 
then p ts a left-factor of a. 

Proof. By induction on the length of b, and by the previous theorem. 

THEOREM 13. If a number a can be written as a product of primes in two ways, 

={1],---, Isl). 

Proof. By Lemma 1, Theorem 12, and the left-cancellation law for J. 

We conclude our discussion of J by introducing the concept of congruence in 

it. In ordinary arithmetic, a homomorphic image of the ring of integers is ob- 
tained by adding the relation |m| =|0| to the ring. Then two integers are con- 
gruent mod | m| if they map onto the same element under this homomorphism. 
It is shown in [6] that if m(=w(1)) is an element of J, then adding the relation 
u(1) =0 to J determines a left neoring which is a homomorphic image of J. We 

define two numbers in J to be congruent mod m if they map onto the same ele- 

ment under this homomorphism. Alternatively, we can define two numbers in 
I to be congruent mod m if their difference lies in the fully invariant normal sub- 

loop, generated by m, of the additive loop of J. The relation between these two 
points of view is discussed briefly in [6] and can be studied in detail using the 

techniques of [4], [5]. The homomorphic images of J described above are the 
nonassociative analogues of finite arithmetics. 

With the above definition of congruence in J, some of the elementary prop- 

erties of congruence in ordinary arithmetic carry over without difficulty (see, 

e.g., Chapter 1 in [8]). The author does not know whether the same is true of 
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some of the deeper theorems involving congruence. 

4. Further developments. The ideas introduced in this paper can be de- 
veloped in several directions. There are many problems for the arithmetic N, 
e.g., obtaining an analogue of the prime number theorem. This seems quite 
feasible since estimates of the number of nonassociative natural numbers of 
given length are available. 

In some of our proofs of properties of N we used properties of ordinary 
arithmetic including induction. Can this be avoided completely and all proper- 

ties of N obtained from the postulates for N given in Section 3? One way to do 

this is to develop ordinary arithmetic within NV. Define nonassociative powers 

of numbers in N by a!=a, a™** =a™-a" where m, nEN. An equivalence relation, 

=, between numbers in N can be defined by m=n if a™=a”" for all aE N. We 

now show that the set of these equivalence classes satisfies Peano’s postulates 
for the ordinary natural numbers. This is a consequence of the Peano-like postu- 

lates which WN satisfies. The length of a number in N is defined as the equiva- 
lence class containing m. In this way all of ordinary arithmetic and in particular 

those parts which we have used in discussing N can be developed inside N. It 
follows that if we set up N as a formal system, there will be a Gédel incomplete- 
ness theorem for the system. We leave to the interested reader the detailed carry- 
ing out of the above ideas. A related topic which may be interesting is the 
theory of recursive functions of nonassociative natural numbers. 

There are many concepts involving congruence in ordinary arithmetic which 

should have interesting analogues in the arithmetic J. In particular we can ask 
such questions as the following. For what congruences does the quotient arith- 
metic (i) satisfy the cancellation law, (ii) allow division, (iii) allow unique divi- 

sion, (iv) satisfy the commutative laws of addition and multiplication? Other 

problems are (i) what is the structure of the multiplicative semigroup of J, 
(ii) can I be embedded in a system with division? 

If we add to N the identical relation (a+) +(c+d) =(a+c)+(b+d) we get 
an arithmetic S with many interesting properties. In this system, which is the 
free symmetric groupoid generated by 1 (see [7]), we define multiplication as 

usual by u(1)-v(1) =0(u(1)). Then multiplication is commutative and so both 

distributive laws hold. This arithmetic is extremely close to ordinary arith- 
metic, differing only in the replacing of the associative and commutative laws 
by the single law (a+5) +(c+d) =(a+c)+(b+d). A study of the number theory 

of S should lead to some interesting problems. Another problem which presents 
itself is the obtaining of a set of Peano-like postulates which characterize S. 
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MAINTAINING COMMUNICATION* 

E. J. McSHANE, University of Virginia 

Some twenty years ago a professor of philosophy spoke to the mathematics 

club at the University of Virginia. The speech was followed by a warm discus- 
sion of the paradoxes of Zeno. Some regarded the mathematical explanation of 
the paradoxes as completely adequate, others disagreed, and needless to say, 

each disputant emerged triumphantly bearing the opinion he had carried in. But 

one remark of a professor of physics has stayed with me ever since. He said that 
he could easily conceive that someone could arrive in his own mind at a perfect 

solution of the paradoxes and still be unable to convey the explanation to any- 
one else. 

Let us at least temporarily suspend disbelief in this philosopher with the in- 
communicable thoughts, and not boggle over reasons for acceding to him a belief 
that we deny to Fermat and his celebrated proof that was too long for the 
book’s margin. There remains the fact that to the body of philosophy he re- 
mains exactly as useless as though he had never existed. Perhaps he has derived 
intense personal satisfaction from his brilliant reasoning, but the rest of the 
world may as well ignore him. 

In recent years I have been troubled by a suspicion that this image of the 
uncommunicative philosopher may be a parable of an approaching state of 
mathematics. Fortunately, rather than a parable it is an overdrawn caricature, 
but as in all caricatures some features are recognizable. For in mathematics, as 
in the sciences, the communication of ideas becomes steadily more difficult. This 

is a matter that concerns all of us, and each of us should try to help in keeping 

the lines of communication open. 

To begin with, there are the mechanical and financial difficulties involved 

* Retiring Presidential Address, delivered at the Fortieth Annual Meeting, December 29, 
1956, Rochester, N. Y. 
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in the publication of a flow of mathematical research whose volume grows 
steadily. I do not intend to say much about this. Competent people are trying 

hard to find a solution, and it is not entirely clear that a solution exists. As some- 

one said to me earlier this month, we have caught a geometric progression by 

the tail. Nevertheless, as matters now stand the author of a reasonably good pa- 

per can expect to have it published with reasonable speed. I propose to talk 

about the author and the paper, rather than about its publication. 
I wonder if any one here has already silently objected that I seem to be 

speaking of research, aad not of teaching, which is a more proper activity of the 

Association. If so, his pbjection is itself an example of a hindrance to commun- 

ication. The normal activities of a mathematician should include a mixture of 

three ingredients. One is teaching; another is research; and the third, which as 

Professor Duren says is all too often left unmentioned, is scholarship. Any one 

of these three may be omitted, but in my opinion not without loss. No one can 

confine himself to any single one of the three without injury to himself, and 

perhaps to others too. When this Association was formed in 1915 it was for the 
satisfaction of a need. To put it bluntly, the American Mathematical Society 

had refused to consider anything but mathematical research as being in its 
sphere of activity. Nevertheless, I consider it regrettable that the need existed, 
and that the activities of teaching and research are thus separated. One of the 
visible results of the separation is seen in the content of mathematics courses in 
colleges, and even more in high school courses. The tremendous changes in mat- 

ter and method of research have produced hardly a ripple at the freshman level, 

and less in the high schools. 
Let me enlarge a bit on this topic. During our lives mathematicians have 

transferred their chief interest to new topics, and they study these topics with 
changed thought-patterns. Abstraction and generalization have increased, not 
(at least not always) merely for the sake of generality itself, but because the ab- 

stract approach exposes the essential ideas and clears away what is merely for- 
tuitous, and the generality yields new fields of application of the ideas. Set- 
theoretic concepts have pervaded mathematics, both pure and applied. The 

basic ideas of topology are the common language of mathematicians in all fields. 
Linear processes and matrix algebra are now matters of great interest to applied 

mathematicians, and so on, through a list which is quite long if we include more 
specific items. Yet there are modern books on “mathematics for engineers” 

which explain, as did my grandfather's calculus text, that there are two kinds of 

zero, the “nothing-at-all” kind obtained by subtracting a number from itself, 

and another mysterious kind, smaller than any positive number but yet not rec- 
onciled to being nothing at all, that we meet when we “evaluate the indetermi- 
nate expression 0/0.” Most mysteriously, this nonsense is written in a presum- 
ably sincere effort to help the reader understand the subject. Fortunately, there 

now exists a respectable minority of calculus texts in which definitions and 

proofs are carefully and correctly stated. At a lower level, the advent first of the 

electric computing machine and then of the high-speed electronic computer has 
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diminished the importance of some older computational devices. Horner’s meth- 
od can profitably be forgotten; yet in some good high schools several weeks are 

allotted to it. Logarithms are not nearly as important as they once were, and 

the various “time-saving” devices for solving triangles by formulas adapted to 

computation with logarithms are hardly worth the time they cost. Yet, if I 
hear a chorus of mathernaticians’ voices (and I hear my own voice in the chorus) 

asking “Why do these people spend irreplaceable time on the less valuable sub- 

jects and ignore the better ones?,” I also hear voices (including the voice of my 

conscience) asking, “Did you bother to tell them?.” 

Here, at least, I can add a more cheerful note. The Association’s Committee 
on the Undergraduate Program is composed of mathematicians who are active 

participants in research and are also interested in undergraduate teaching, and 

its aim is to provide the means of changing the present undergraduate teaching 
by making some of the more recent gains in mathematics available to college 
students. Also, there are other committees and organizations working on related 

problems, so we may reasonably hope for improvement. 

Communication between the teacher and the scholar of mathematics is so 

important that I can imagine only one satisfactory arrangement: the two must 

wear the same skin. The man who is neither researcher nor scholar, and never- 

theless is listed on some payroll as teacher of mathematics, is probably falsely 

listed. At best he is a transmitter of information given him in the more or less 
remote past; at worst he is drill-master for the problems in some third-rate text- 

book. In either case, he hasn’t bothered to come to this meeting. The man who 
is a research specialist and teacher, without being a scholar, is easy enough to 

find. Sometimes he is a teacher only by necessity, giving all his enthusiasm to his 
research. Sometimes he is an enthusiastic teacher of advanced students, spread- 
ing forth the pleasures of specialization in his own field. In this case he may 
produce students with great enthusiasm but narrow views, whose broader edu- 
cation must be left to other more scholarly teachers or the hands of the gods. 
In either case, he gives weight to the definition in Webster's Collegiate Dictionary: 

doctor [O.F. doctour, fr. L. doctor teacher, fr. docere to teach] 1. Archaic. A teacher; a learned 
man. 

Quite another matter is the communication of thought between the research 
worker on the one hand and the teacher-scholar on the other. Now we are in a 

zone where the individual mathematicians can begin to feel their own share ot 

guilt in a situation that is far from perfect, although a prevailing climate of 
thought is also largely to blame. Here is the domain of usefulness of the ex- 
pository article. The advanced treatise or monograph may be serviceable as a 
means of showing all that has been accomplished in some field, but for the man 
who is principally a teacher or principally a researcher in some other field, the 
sheer bulk of the monograph may be discouraging. Besides, these are properly 
the fruits of long labor, and their writing is not lightly to be undertaken. But 

for expository writing on a smaller scale there is considerably more demand than 
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supply. In order to have at least one number to quote, to substantiate my claim 
that the supply is scant, I thumbed through the first hundred pages of the latest 

number of Mathematical Reviews, searching for papers dismissed with the com- 
ment “Expository paper.” I found seven of them, that is roughly one expository 

article to a hundred research articles. But more careful investigation shows that 
two of the seven were reports of conferences, hence hardly to be considered 

expository in the present sense. Of the remaining five, four were in Russian. Are 

we then to dismiss the scholar, and the research worker in some other field, and 

the physicist or chemist or interested layman, with the advice “Learn Russian 

and subscribe to the Uspeht”? 
Certainly this trouble has been recognized before, and various efforts made 

to cure it. For example, the Carus Monographs and the Slaught Papers are 

sponsored by this Association, and some of the “What is... ?” series in the 
MONTHLY were excellent. But it has always been difficult to keep up the supply. 

A chief reason for this scantiness is easy to find. Every normal human being 
wants recognition for his work. Even the hypothetical philosopher with his in- 

communicable resolution of Zeno’s paradoxes would probably like to hear a 

word of praise from some believing soul. Since a research paper, even on the 

narrowest and most special of topics, is ordinarily looked on with more rever- 

ence than even an excellent expository paper, it is natural and human that a 
mathematician should be inclined to spend all his available working time on re- 
search. This is particularly true of the younger mathematicians. With them, 

recognition and promotion may well depend more on published research than on 

scholarship or teaching. Besides this, the writing of a good expository article 

calls for breadth of view and historical perspective, which are hardly the cor- 

relates of youth. 
But these reasons apply much less cogently to the mature mathematician, 

who has reached a secure position and a level of esteem not likely to be greatly 

raised or lowered. By “mature” I do not mean superannuated. I am not recom- 
mending the writing of expository papers as a sort of pastime for gentlemen 

(young, old or middle-aged) who have determined by careful self-examination 

that they haven’t a research paper left in their systems. A man of thirty may 
have attained position and recognition and broad knowledge; a man past sev- 
enty may be active in research, as the current volume of the Proceedings of the 
National Academy of Sciences will show. 

The fund of scholarship that supports the writing of a good expository paper 

comes from having read, marked, learned, and inwardly digested many articles 

in some field. Usually this reading was prompted by an interest in some research 

problem, but this is not a necessary condition. However, the mere intensive 

reading of many papers is not a sufficient condition either. One can be so imbued 

with interest in one special problem that everything is mapped on a sort of polar 
coordinate system, with the one special problem at the origin and interest in- 
versely proportional to r?. Alternatively, one can read something new to find 
what it is in itself and how it relates to previous knowledge. Such reading, with 

a 

« 

q 

4 

q 

4 

A 

q 
q 
‘§ 

4 

4 

x 



1957] MAINTAINING COMMUNICATION 313 

thoughtful rumination, is a natural source of scholarship, of good teaching, and 
in particular of good expository writing. 

Leonard Eugene Dickson used to say (I have forgotten his exact words) 

that every mathematician owed a debt to mathematics that he should repay 
by one hard job of scholarly writing. His was the huge History of the Theory of 

Numbers. Not many of us could consider such a vast undertaking. But each of 
us owes the debt, and should not. repudiate it if he is mathematically solvent. 

The purpose of an expository mathematical paper is, of course, to convey 

information about some domain of mathematics to some audience, which might 
consist of specialists in a slightly different field who wish to add to their research 

capacities, or of mathematicians wishing to broaden their knowledge, or of 
teachers at any level from high school to graduate school. Obviously, the best 

written exposition fails if no one reads it. If any man wishes to consider himself 

a teacher and scholar of mathematics, it is his clear duty, and it should be his 

pleasant duty, to add continually to his knowledge, and in this he should be 

greatly helped by expository articles of the type appropriate for him. The 
teacher who neglects this is doing himself a grave wrong. What is worse is that 

he is doing an even graver wrong to his students and to his subject. I have heard 

of a professor (not a mathematician) who remarked that he had been lecturing 

twenty years from the same notes, and that the only change that he expected 
after another twenty years was that the pages would be yellower. I cannot con- 
ceive of any field in which this attitude would be harmless. But certainly any 

teacher of mathematics who would thus decide that mathematics belongs in 

the Valley of Dry Bones must inevitably convey the same impression to his stu- 

dents. The best of books is inferior to a human being as a means of conveying 
enthusiasm for and pleasure in a field of study, and if the teacher fails to show 
that the subject is alive and moving and fascinating, he fails in just that respect 
in which the responsibility is most peculiarly his own. 

One form of communication which up to the Second World War had been 
in rather bad shape, but fortunately is now improving, is the contact between 
mathematicians and other scientists. Applied mathematics was not long ago re- 
garded as the tedious solution of specific problems by known devices, and often 

without adequate logical justification. Even today the mathematical reasoning 

in the quantum theory of fields or in nuclear physics is apt to shock a mathe- 
matician trained in rigor. There are two ways of reacting to such a situation. 
One is to look on the physical theory as ludicrous and refuse to sully one’s hands 
with it. The other is to observe that the illogical theory has yielded useful re- 
sults, and is thus probably a sort of parody of a rigorous and coherent theory. 
This implies a challenge to find that rigorous theory. It is in such situations 
as this that the applications have benefited mathematics, by calling for new 

devices and new combinations of old devices to handle a problem which has 
presented itself not artificially but irrepressibly and clothed with its own im- 
portance. 

Mathematics has retained its place among the chief subjects of education for 
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well over two thousand years, but this does not mean that it is surely immortal. 
It has stood firmly because it has stood on two legs. First, it is supported by its 

innate beauty and austere elegance. Second, it is supported by its usefulness to 
scientists and technicians of all kinds. If we try to make it stand exclusively on 

its usefulness, it becomes a mere tool for the use of non-mathematicians, and 

degenerates into dullness and eventually into uselessness. If we try to make it 

stand exclusively on its esthetic virtues, we not only make it useless to other 

sciences but reject the stimulus that it can receive from them. So it is desirable 

that among the research workers in mathematics there should always be some 
who are interested in its applications. Likewise, the scholars and the teachers 
should not ignore the many uses of mathematics. Right now this places quite a 

demand on the scholars and teachers, for mathematics has entered new fields, 

sometimes in rather unexpected ways. As examples, I cite genetics and the 

theory of games. 

So far, all the aspects of communication that I have discussed have borne 
the typical earmarks of a Mathematical Association activity—they have all 

called for much individual enthusiasm and activity and very little cash. I now 

wish to say something about another activity which now involves millions of 

dollars, but at its outset had the typical Association earmarks. I am referring 

to the Institutes for teachers. A while ago I made the obvious remark that 
enthusiasm for a subject is easiest conveyed by personal contact with an en- 

thusiastic teacher. It is reasonable to assume that a teacher of mathematics 
brings some store of enthusiasm to his teaching. But we ask a great deal if we 

expect that teacher to keep up his enthusiasm and increase his scholarship by 

reading and study if he himself has no contact with some other enthusiast. 

Clearly it is desirable to rekindle the enthusiasm and increase the learning of 

teachers by giving them the chance to study occasionally with leading mathe- 

maticians. This is the motive of the Institutes for teachers. These have sprung 
up in various forms; in time-scale, they varied from short conferences up to the 
one developed at Notre Dame, which is devised especially for teachers and has a 

program based on five summers’ attendance and leading to the degree of M.S. 
The one about which I now want to speak took place in the summer of 1953, at 
the University of Colorado. The enthusiasm and personal dedication were cer- 
tainly there; Burton W. Jones did two men’s work. Other mathematicians were 
vigorous in their cooperation, and the University of Colorado supported the 

project well. The supply of funds was none too ample, but the personal con- 

tributions made the Institute a notable success. Its chief disadvantage, of course, 
was that it alone could not reach a vast number of teachers. 

Only three years after the Colorado Institute, Congress, alarmed by our 

shortage of scientists and technicians, made an appropriation of millions of dol- 
lars for improvement in teaching of mathematics and science. The National 
Science Foundation had to find wise ways of using this money for the given pur- 
pose. It must have been quite a help to them (1 speak from no expert knowledge) 
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that they did not have either to spend the time needed for a trial run or to take 

the risks of putting the money into new and untried devices. Summer Institutes 

had already been tried out and found successful, and the experience was there 

for guidance. Now from small beginnings we have progressed to a large enter- 

prise. The scale is utterly beyond the Association’s financial resources, but the 

personal contribution is still a vital need. Some of us may be needed as teachers 
in the institutes; others may wish to attend them for refreshing. I hope that each 

of us will do whatever he can to help with the project. It would be a serious 

error to think that the large scale of operation has diminished the importance 

of the individual contributor. Quite the opposite is true. The success of an In- 

stitute depends above all on the presence of workers who have both learning 

and enthusiasm, and the increase in the number of institutes calls for the co- 

operation of every one who can make a contribution. 
We have been hearing a great deal recently about the proliferation of mathe- 

matical research. This certainly is no news to anyone who has noticed the 

steady growth in the size of Mathematical Reviews. About sixteen years ago I 

bought a house which had been unoccupied for five years. Summer after summer 

we fought a losing battle against honeysuckle; it grew faster than we could dig 

it out. Then came the discovery of the weed-killing properties of 2-4-D, and the 

battle was won. As I understand it, a broad-leaved plant sprayed with 2-4-D 

does not die at once; it begins to proliferate rapidly, growing quickly and with- 

out organization. Asa result, it dies. I cannot look on the proliferation of mathe- 
matics as being in all circumstances an unqualified good. Each mathematical 

discipline needs to draw on the others; yet it is impossible for even the best of 

us to keep abreast of the research in more than a small part of the field. We are 

separating off into small groups of specialists with little intercommunication. 

What the solution is, or whether there is a solution, I do not pretend to 

know. But I can propose a palliative. We can pay more attention to the quality 

of our writing. Within a generation there has been a regrettable decline in the 
style and clarity of mathematical composition, a decline visible in all countries. 

Even the French have slipped sadly from their previous excellence. This decline 

has made it harder for us to read articles in any field in which we are not special- 

ists. A published paper is not properly an open letter to a half-dozen fellow- 

specialists who understand the motivation, possess the antecedent information 

and can readily fill in omitted definitions and proofs. An addition to mathe- 

matical knowledge has significance as a part of the body of all mathematical 

knowledge, and its place in that body should be clearly indicated. Unless the 

reader is one of the tiny group of those who have read everything in that specific 
subject, he may be quite capable of following the details of proofs and yet unable 
to realize why the author was led to study the problem, or how it complements 

past knowledge or points toward future advances. If the author has not bothered 
to establish the setting of his paper and convey some of the motive that im- 

pelled him, he has driven off potential readers and made everything harder for 
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those who stay with him. I am convinced that it is the duty of editors to de- 

mand, not to forbid, the writing of introductory paragraphs to provide motiva- 

tion and background. This need not be long; even a little can be disproportion- 
ately helpful. 

Within the body of the paper, it is often distressing that so little care is ex- 
pended on presentation. Often the author has clearly worked hard on the mathe- 

matical content, removing all superfluous hypothesis, obtaining as much con- 

clusion as possible without irrelevant steps. But after he has burnished the 

mathematics to a high polish, he has written it down hurriedly, with little 

thought for style. Long sentences drag their gangling dependent clauses across 
the page. Pronouns look back helplessly into a welter of nouns in the hope of 

finding an antecedent. Even worse for the uninitiated reader, there are expres- 

sions that proclaim the hopelessness of the search. Many papers bristle with 

“The expression .. . is defined in the obvious way,” and “Clearly, ... ,” and 

“By the usual proof, ... ,” and “Mapping this onto A in the natural way,” and 
“By a well-known theorem, ....” These are frequently not even space-savers; 

the uninformative words can be replaced by a precise statement, and the “well- 

known” theorem precisely located, with little if any cost in length and with 
great benefit to the intelligent but imperfectly informed reader. 

Moving still further in this direction, we meet a mental attitude that regards 
communication as vulgar. There are mathematicians (fortunately few) who con- 

sider that a speaker has somehow “lost face” if he has spoken so as to be intel- 
ligible to any but the select few. One hears of “folk theorems,” established (pre- 

sumably) by some expert, communicated verbally or more likely mentioned in 

an off-hand way during some conversation with another expert or two, and 

thereafter unpublishable forevermore because no one would want to publish a 
“known theorem.” This is not mere uncommunicativeness; it is active opposition 

to communication. I recently saw it nicely summarized in a sentence in one of the 

reviews in a recent number of Mathematical Reviews; I am quoting from memory 

because I have forgotten the name of the reviewer and prefer to forget just who 

said this: “This theorem seems not to have been published previously, but is 

probably known to some of the workers in this field.” 
I would much prefer to see such mathematicians converted to fellow-workers. 

However, if they wish to form a Society for Mutual Admiration, or a sort of 

Egyptian priesthood guarding their secret knowledge from profanation by the 
vulgar, we can only let them go their way. But it would be surely wrong to abet 

them in their self-satisfaction. If they choose to suppress their knowledge, they 

cannot ask for recognition because they possess it. No man deserves serious 

credit for having established a theorem until he has put the proof in plain 

sight, for the open criticism of other mathematicians. I know of at least two 

instances in which a report was widely circulated that Mr. X had a proof of this 
or that, and later it turned out that what he had was seriously defective. This 

is quite excusable; men do make mistakes. But it would have been inexcusable 

to ask for the acclaim of mathematicians on the strength of a “proof” with an 
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error in it; and it is likewise wrong for us to give acclaim on the strength of a 

proof that has not been openly presented for criticism and found sound. I feel 

that no mathematician should hesitate to publish a result because someone tells 

him that he thinks that Z did something like that two years ago but didn’t 
write it up; nor should he falsify history by giving credit to Z for priority when 

Z has not established his right to the credit by letting us see his proof. 

Everyone of us is touched in some way or other by the problems of mathe- 

matical communication. Every one of us can make some contribution, great or 

small, within his own proper sphere of activity. And every contribution is needed 

if mathematics is to grow healthily and usefully and beautifully. 

A CURIOUS SEQUENCE OF SIGNS 

J. B. ROBERTS, Reed College and Wesleyan University 

In this paper we give an algebraic identity which gives rise to a sequence 

of number theoretic functions, u(m) with 6b a positive integer >2. For each 

such b, u,(m) appears in a rather interesting polynomial identity. Considering 

two special cases of this polynomial identity we find a new binomial identity 

and another identity which has application to the Tarry-Escott problem in 

number theory. 

The function u2(m) also gives rise to a set of functions on [0, 1] which con- 
stitute a lacunary subsequence of the Walsh functions and which have some 

properties similar to the Rademacher functions. 

1. The functions u,(n). Let G be a commutative ring with unity such that 
there exists a mapping f of J+, the collection of nonnegative integers, into a 

subset G of G satisfying f(a+b) =f(a)f(b). Then when b>2 we find that 

k 

(1) II = ur(n)f(m — 1), 
n=1 

where “() is +1 times a product of binomial coefficients. In order to give an 

explicit expression for u,() we define two other functions of n. 

b(n) is the coefficient of b/ in the expansion of m to the base }, 
2 

@) = b,(n). 
j=0 

Using (2) we have 

(3) win) = 
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Although ,(m) appears in (1) only for 1<n<b+, the relation (3) defines 

u(n) for all Taking 1<n<b*, m>0 we find that »(m—1+mb*) 

=(n—1)-+(m) and 

b(n 1 + mb*) - io) 
Hence from (3) we conclude that 

(4) ur(n + mb*) = uy(n)us(m + 1) for i cn < m > 0. 

Formula (4) enables us to calculate u(”) inductively from ~() for 1<n<b 

and these are readily determined from (3). We discuss the calculation of the 

uz(m) again in Section 3. 

Taking b=2 we find u2(m) =(—1)"-” and therefore u2(m) is 1 or —1 ac- 
cording to whether the digit 1 appears an even or an odd number of times in 

the dyadic expansion of »—1. Writing + for 1 and — for —1 the sequence of 
U2(n) starts as follows: 

(5) 

Note that the first 2* digits are the negatives of the next following 2* digits for 
all k>0. 

2. Translation operators and a polynomial identity. Let D(ai,---, a; 

- , bx), ag and integers, be an operator which maps the polynomial P(x) 

into the polynomial a;P(x+):)+ --- +a,P(x+b,). The totality of such oper- 

ators is a commutative ring with unity. Letting this ring be G and taking G 
to be the subset of “translation operators” E(b) = D(1; b), ba nonnegative inte- 

ger, we find that the mapping f: b+E(6) from J* to G has the property f(a+d) 
=f(a)f(b). Hence (1) of Section 1 becomes 

k bk 

(6) II = u(n)E(n — 1). 

Noting that 1—E(a) maps constants onto zero and reduces the degree of all 

other polynomials by one we see that the operator in (6) will map all poly- 

no.nials of degree less than k(b—1) onto zero; pa uy(n) E(n —1)P(x) =0 

for P(x) a polynomial of degree less than k(b—1). This then yields the identity 

(7) > uy(n)P(x + n — 1) = O for P(x) of degree less than k(b — 1). 

Formula (7), with x=g/m, yields the binomial identity 

bk 

(8) 
n=1 

n=1 n=] 

n=l 

(b 1), j = 0, 

1 
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when P(x) is taken to be the polynomial (j+mx) - - - (j+-mx—gq+1)/q! of de- 

gree g. This identity (8) is especially nice when 6=2. 

In terms of the Pascal triangle, identity (8), with b=2, says that if we start 

choosing numbers spaced m rows apart (m20) from the q+ 1st column, begin- 

ning anywhere (j20), and take 2* of them, where k>gq, then if we append the 
first 2* signs of (5) to the numbers obtained the resulting numbers sum to zero. 

For example, if j=q=2, k=3, m=1, we have 3—6—10+15 —21+28+36-—45 

=(). 
Taking P(x) =(x+1)", 0<m<k(b—1), in (7) gives 

bk 

(9) >» uy(n)(x + n)™ = 0. 

From (9) we obtain the following two identities by letting x be 0 and g/p, 
respectively. 

bk 

(10) >> ws(n)n™ = 0 for 0 < m < k(b — 1). 

bk 

> us(n)(q + pn)™ = 0 for 0 < m < k(b — 1), p and g arbitrary real 
n=1 

11 
(it) numbers. 

3. A modified Pascal triangle. In this section we give a method for the rapid 
computation of the ~() and at the same time show in a more striking way the 

connection between the u,(”) and the binomial coefficients. 

When 1<2<b equation (3) becomes 

Therefore we can obtain the values of (mn), 1<n<b, by reading from left to 

right in the bth row of the following modified Pascal triangle. 

1 
i —1 
1 1 

1 -3 3 -1 

1 —4 6 —4 1 
1 -5 10 —10 § -1 
1 -6 15 —-20 15 1 

Now if we take k = 1 in (4) we obtain u,(n+mb) = u,(n)u,(m+1) for 1<n<b, 

m>0. Successive applications of this formula enable us to extend to the right 

the rows of the above modified Pascal triangle thereby obtaining the u,(m) for 

n>b. Thus at the first step we multiply each of the first b elements of the bth 

row (b>2) by the 2nd element in that row and put these new numbers at the 

i 

n=1 

‘ 
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end of the row one after the other. The completed first step yields 

-1 -1 1 
—2 1 -2 4 -2 

—3 3 -1 -3 9 -9 3 
—4 6 —4 16-24 16 -—4 
-5 10 —10 -5 2-50 SO —25 5 

At the second step each of the first 6 elements of the bth row is multiplied 
by the 3rd element in that row and the resulting numbers placed one by one 

at the end of the row. At the next step we multiply by the 4th element in each 

row, etc. The final resulting array is as follows. 

-i -1 i 1 i-i -1 1 i i-i -1 1 —1--- 
—2 1 —2 4 1 i -—2 4 4 -8 4 -2 

3 -1 -3 9 -9 3 -9 9 -3 -!1 3 -3 1 —3--- 

—4 6 -4 16-24 16 -4 6-24 36 —24 6 16:-:- 

-5 10 —10 § -1 25 -—50 50 —25 5 10 —50 100 —100 50-::: 

-6 15 -20 15 -6 1 -6 36 —90 120 -90 36 -—6 15 -—90 

Thus this array of numbers contains all u,(m) for b>2,">1. 

4. Sums of powers of integers. The extension of the modified Pascal triangle 

discussed in the preceding section can be used to illuminate some of the results 

in Section 2. We consider here formula (10). 

Since the “,(”) are just the numbers in the bth row of the final array of num- 

bers given in Section 3 we have the following. Write below the numbers in the 
bth row of this array the successive mth powers of the integers. In the case )=4 
we have 

1 -3 3 -1 -3 9 -9 3 3 -9 9 -3 -1 3 -3 

If we now multiply each number in the first row by the power directly below 

it in the second row and regard these products as summands then the sum of the 
first b products is 0 when 0<m<5b—1, the sum of the first b? products is 0 when 

0<m<2(b—1), - +--+, the sum of the first b* products is 0 when 0<m<k(b—1). 

In the example above with }=4 we have 

1° — 3-2" + 3-3" — 4* = 0, 0<m <3, 

1" — 3-2" + 3-3" — 4" — 3:5" + 9-6" — 9-7" + 3-8" + 3-9" — 9-10" 

+ 9-11" — 3-12% — + 3-14" — 3-15" + 16° = 0, 0< m < 6, 

In the next section we consider sums of powers of the above kind which 
arise from (10) in the case b=2. 

. . . 

4 
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5. Application to the Tarry-Escott problem. The Tarry-Escott problem is con- 
cerned with finding sets of integers a;, - ,@, and - - - , 6, such that 

(12) 
i=1 t=1 

If (12) holds we shall write a1, bn. 
From (10) in Section 2 we can obtain in the case b=2 the result 

gk +1 

(13) u2(n)n™ = 0 for O< k. 
n=1 

Similarly from (11) we obtain 

gk ti 

(14) >> u2(n)(q + pn)™ = 0 for O<m< 
n=l 

Using (13) we can give a very simple proof of the known proposition: 
: For all k>O there exist sets of integers a; and b; such that a1,---, Qn 

=), bn. 

We need only take a, : - - , a, to be those integers between 1 and 2**! in- 

clusive with u.(a;)=1 and b,---, b, to be those with u(b;)=—1. Then 

The usual way of proving this result is to use the following proposition due 
to Tarry. 

If a1, +++, +, by then, for all h, 

On, + +>, bn + bay Bay Git hye Ont 

The advantage of our proof is that it manages to get at the a; and 5; directly 
without having to use a stepwise procedure. 

Our solution for k is, however, one possible result obtained by applying 

Tarry’s theorem repeatedly and starting with 122. Using Tarry’s theorem with 

h=2* we deduce from the equation p u2(n)n™ =0, valid for O<m<k, the 

equation 

ok 

Dd {u2(n)n™ + + 2*)(n + 2*)™} = 0, 

valid for O<m<hk. But the left side of this last equation is 

ok gk +1 

n=1 n=2"+1 n=1 

and this is just the left side of our solution for k. Hence, starting with our solu- 

tion for k=0 and applying Tarry’s theorem k times with h=2, 2?, 28,---, we 

arrive at us(n)n™=0. 
Another known theorem is the following: 

n=] 
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Any set of 2**! integers in arithmetic progression can be split into equinumer- 

ous classes a, a and ---, such that a1,---, ber. 

We can generalize this theorem and at the same time make the splitting explicit 

by using (14). We get 

Any set of 2*+! numbers in arithmetic progression can be split into equinumerous 

classes ai, ++, a and by, + , bok such that ay, agkXby, - , bo and this 

splitting can be effected by (14), taking the a; to be the positive terms and the b; to 

be the negative terms. 

6. An orthonormal set of functions. Define the functions u(x), »>0, on 

O0<x<1 by 

0 if 2"+'x is an integer, 

+ [2"+1x]) otherwise, 

where [y] denotes the greatest integer <y. Defining the Rademacher functions 
r,(x), n>0, on 0<x<1 by 

(16) r,(x) = sgn sin (2"+'7z), 

(15) u(x) = { 

we can show that 

(17) u(x) = J] r(x). 
i=0 

Noting that the Walsh functions y,(x), 2 >0, on 0<x<1 are defined by 

x) = 1, 

k k 

t=1 t=1 

we see that, in virtue of (17), the functions u(x) form a lacunary subsequence 

of the Walsh functions. 
The theorem which states that >>, a;(x) converges almost everywhere in 

0<x<1 when a?< remains true when the r;(x) are replaced by 

and with the same proof (6, pp. 126-7). 
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ON MORERA’S THEOREM 

GEORGE SPRINGER, University of Kansas 

The Theorem of Morera states that if f is a single-valued, continuous func- 

tion from a region R of the z-plane to the complex numbers and if 

(1) | J sou =0 

for every closed, rectifiable curve C in R, then f is holomorphic (that is, f is 
analytic and regular) in R. It was early recognized that one need not assume 

(1) for every closed rectifiable curve in C but only for some more restrictive class 
of curves. Osgood [5] gave a proof of Morera’s theorem in which he assumed that 

(1) held on all “small” rectangles with horizontal and vertical edges lying within 

R. Rademacher [6] showed that the condition of continuity of f in Osgood’s 
theorem may be replaced by Lebesgue integrability over R and linear integrabil- 
ity over horizontal and vertical segments lying in R. He then obtained that f 

is almost everywhere equal to a holomorphic function in R. 

Looman [4, 9] showed that, for continuous f, (1) may be replaced by the con- 

dition that at each point 2€R, 

f sods 
1 

=O) 
and (zo) =0 for almost all 2ze9€R, where Q represents a square with center 29 

and horizontal and vertical edges, and m(Q), denotes the area enclosed by Q. 

Wolff [10] and Ridder [8] relaxed the hypotheses of Looman’s theorem some- 
what. 

In all of these works, the squares or rectangles with horizontal and vertical 
edges played an essential role. It is well known that harmonic functions are char- 
acterized by the mean value property on small circles [1] and we may ask 
whether holomorphic functions are likewise characterized by the Morera theo- 

rem for small circles. The problem is different from that for rectangles since 

circles do not lend themselves to building up paths between two points. The 

method we use to prove the Morera theorem for “small” circles is that of smooth- 
ing operators or areal means [2, 7]. This application of the method affords an 
easy way to become acquainted with this important tool that is so often used 

now in existence proofs. 

We first prove the type of theorem we seek under stronger hypotheses than 

necessary and later weaken these hypotheses. 

323 
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THEOREM 1. Let f be a single-valued function from a region R in the 2-plane to 

the complex numbers and let fEC'(R) (1.e., f has continuous first partial derivatives, 

Of/dx and Of/dy, in R). Assume that 

(3) , + = f(z)dz = 0 
Cy (20) 

for each 2o5€R, where C,(zo) denotes the circle ema =r. Then f is holomorphic 

in R. 

We observe that if f=u+iv, u, v real, then for any circle C in R, 

J sox = J was vdy) + if (udy + vdx). 

According to Green’s theorem, we have 

where D represents the region enclosed by C. If F is any continuous function in 

a neighborhood of 20, then 

=f F(zo + re*)rdédr = xF (zo). 

Treating 0u/dy+0v/0x or du/dx—d0v/dy as F, the relations (3) and (4) tell us 

that the Cauchy-Riemann equations hold for each 2.€R, so that f is holo- 

morphic in R. 

Coro.uiary 1.1. If f is a single-valued function in R with fEC'(R), and to 
each 29€R corresponds an ro such that 

©) f seas =0 
(20) 

for r<ro, then f is holomorphic in R. 

Indeed, it is clear that (5) implies (3). 

Coro.iary 1.2. If the single-valued function fEC'(R) satisfies at each point 

2ER, 

(6) por = (zo + re**)e*dédr = 0, 

then f is holomorphic in R. 

To prove Corollary 1.2, we set G(r) = {$"f(zo-+re*)e#d8 and proceed to show 
that 

i 

i 
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(7) lim — G(r) = 0, 

when 

1 

(8) lim — f G(r)dr = 0. 
Jo 

We observe first that G(0) =0 and that since fE€C'(R), G(r) has a continuous 

derivative G’ for 0<r<ro for some 7o>0. In fact, we have 

Then lim,.o G(r)/r =G’(0) while 

1 1 1 
G(r)dr — (0) = =f f [G’(s) — G’(0) jdsdr. 

Since G’ is continuous at r=0, for a given e>0, there exists an ro >0 such 

that | G’(s) —G'(0)| <e when 0<s<ro. Thus if p<ro, we have 

1 1 
—f G(r)dr — — 
p? Jo 2 2 

proving that 

1° 1 
lim —f G(r)dr = —G'(0), 
e—0 p? 0 2 

and (7) follows from (8). This implies that Corollary 1.2 follows from Theorem 1. 

We now remove the differentiability hypothesis of Theorem 1 by introduc- 

ing smoothing operators or areal means of a function. Let us first define 

P k(p? — x? — y*)? for x? + y? < p?, (9) + iy) = { 
0 for > p’, 

where k is chosen so that 

f f = 2xk f (p? — = 1. 

We say that a function f is Lebesgue integrable in a region R if it is Lebesgue 
integrable over every compact subset of R. Let R, be the subset of R consisting 
of those zp such that the entire disk |z—z6| <p lies in R. Then if f is Lebesgue 

integrable in R, we define the areal mean of f to be 
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(10) M(f, p; 20) = f 5 f "flee + 
0 Yo 

for zo€ R,. Since s,(z) =0 for | z| =p, we may define f(z) =0 for z in the comple- 

ment of R and note that (10) may also be written as 

We next state and prove several properties of the operator M defined in (10), 

Property 1. If f is Lebesgue integrable in R, then M(f, p; 2) ts in class C! in 

R, (i.e., M(f, p; 2) has continuous first partial derivatives in R,). 

If we let z=x-+7iy, we may compute the difference quotient of M(f, p; z) 
at the points z and z+Ax. This is 

M(f, p32 + Ax) — M(f, p32) — 2 — Ax) — s,(f — 2) 

Ax Ax 
] didn. 

According to the mean value theorem applied to the function s,({—z), which 

has continuous partial derivatives in the whole plane, this may be rewritten as 

M(f,p;2 + Ax) — M(f, p32) 

Ax If Ox 

where 0<0@<1. The function 0s,(z)/0x vanishes for | z| >p, and being continu- 

ous, it is uniformly bounded in the whole plane. Thus, we may apply the Le- 

besgue convergence theorem as Ax—0 and obtain 

aM (f, p, 2) — 2) 

A similar expression holds for 0M(f, p, z)/dy, which proves Property 1. 

PRopERTY 2. If f is holomorphic in R and 2oER,, then, 

(12) M(f, p; 20) = f(20). 

For any holomorphic function f and any 2 in |z - Z| < p, we have f(z) 

= an(2—20)" and 

+ = > = 2xf(z0), 
n=0 0 

for all r<p. From this we conclude that 

M(f, p; %) = f(zo + re*)s,(re*)rdédr 

| 

| 

i 

| 

ay 

| 
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= ef r(p? — f (zo + 
0 0 

= 2nf(zo)k f — r*)*dr = f(z). 

PROPERTY 3. If f is continuous in R, then lim,.o M(f, p; 2) =f(z) uniformly on 

any compact subset of R. 

For n=1, 2, - +--+, let R, denote those points of | z| <m which are interior to 
Rand at a distance greater than or equal to 1/n from the boundary of R. Then 

R, is compact, R,C Ray, and R=U7_,R,. It suffices to prove Property 3 for 
the sets R,. For any zo€ R,, the disk | z—z0| <p lies entirely within R,, whenever 
p<1i/(2n). Then 

— M(f, p; 20) = — f(zo + re*) 

Since R:, is compact, f is uniformly continuous on Re, and given e>0, there 
exists a 6>0 such that when | 21 —22| <6, 21, 2€ Re,, we have | f(21) —f(2)| <e. 

Thus when p<6, 

| f(z.) — M(f,p;20)| <e f f 

which proves Property 3. 

Property 4. If f is Lebesgue integrable in R, then 

tim ff | 4G, 9:2) | dady = 0 

for any compact subset D of R. 

It suffices to prove this theorem for the R, defined in the proof of Property 3. 

The function f may be approximated “in the mean” by continuous functions on 
R,; i.e., given €>0, there is a continuous function g on R, such that 

fy, | andy <0 
Then we have for R, 

+ ff, — + ff, | M(g — f, p; 2) | dxdy. 

H 
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The first integral on the right is less than ¢ by the choice of g. The second integral 
is made less than e by making p small enough, say p<po (Property 3). It remains 

to prove that the third integral is also small. 

By Fubini’s theorem, we may interchange the orders of integration over 

R,, and over the disk of radius p. Thus 

SS, M(g — f), 0: 2)| dxdy 

<f f, f + 2) | | andy 

< = 

This proves Property 4. 

THEOREM 2. Let f be a single-valued function in a region R such that f is 
Lebesgue integrable over any compact subset of R. Assume that for all zER, 

1 

13 lim — = 0. (13) im f S(z + re**)e r 

Moreover, assume that for each compact subset K CR, there exist positive numbers 

po and M such that for any z€K and p<po, 

Then f is almost everywhere equal to a holomorphic function in R. 

(14) 
p 

< M. 

Let us introduce the notation 

(15) f f + rei) dbdr. 
0 0 

We first show that the operators A and M commute; i.e., given an integer n, 

then for 0<a<1/(2m) and 0<r<1/(2m), we have 

(16) M(A(f, 0), 7; 20) = A(M(f, 7), 0; 20) 

for all zo€ R,. (Here A(f, c) denotes the function whose value at z is A( f, 7:2) 
and similarly for M(f, r)). This is an immediate consequence of Fubini’s theo- 
rem, for 

M(A(f, 7; 20) = Sf. s-(¢)dtdn + ¢+ re)ededr 

| 
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f t + + re") = A(M(f, 7), 0520). 
0 0 IS i<r 

The function p~*A (f, p) satisfies (according to (13), (14)) lim,.o p~?A(f, p; z) =0 

and corresponding to the compact set Ren, there exist an M and po>0 such that 

|p-2A(f, p; 2)| <M when p <po, Ren. Since for r<1/(2n), p~? A(M(f, 7), p; 20) 
=M(p-? A(f, p), 7; 20) for zo€R,, we may apply the Lebesgue bounded con- 
vergence theorem to conclude that 

lim — (A(M(f, 7), = 0 
p 

for all 2o€ Ra. 
We know, however, that M(f, r)€C! in R, when r<1/(2n). According to 

Corollary 1.2, M(f, r) is holomorphic in R,. This leaves us with the task of 

showing that M(f, r) being holomorphic implies that f is almost everywhere 

equal to a holomorphic function in R,. 

We begin by showing that M(f,7; z) is independent of 7; 7.e., if r, 7<1/(2n), 
then 

(17) M(f, 7; 2) = M(f, 2) 

for © Ry». From Property 2 of M, we deduce that 

(18) M(M(f, 7), 0; 2) = M(f, 7; 2) 

and 

(19) M(M(f,«), 7; 2) = M(f, 2) 

for and r<1/(2m). But an application of Fubini’s theorem shows that 

the left sides of (18) and (19) are equal; for, if \=y-+i, 

038) = f J de f + E+ Nude 

f f s.(d)dudy f f selt)f(e + + = M(M(f, 0), 732). 
lAl<r 

Thus (17) is established. 
We observe next that according to Property 4 of M, 

tim ff | 0:2) = 0. 
n/2 

Since M(f, o; 2) = M(f, 7; 2) for fixed r as e—0, we see that 

M(f, 7; 2) — f(z) | dxdy = 0 
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and finally f(z) = M(f, 7; 2) almost everywhere in Ry, This tells us that f is 

almost everywhere equal to a holomorphic function in R,/2, and since n is arbi- 
trary, the result holds for R. 

When f is Lebesgue integrable in R, then for each 2€R and any disk 

|z—zo| <p contained in R, we know from Fubini’s theorem [3] that the integral 

(20) f(zo + re) 
0 

exists for almost all r in the interval 0<r<p. Let E,(20) denote the subset of 

0<r<p for which (20) exists. Then £,(z0) has linear Lebesgue measure equal 

to p. We may now state the following corollary to Theorem 2. 

CoROLLARY 2.1. Let f be a single-valued function in a region R such that f 

is Lebesgue integrable over any compact subset of R. Assume that for rE E, (20) 

(21) + = 0 
Jo 

for all 2g3ER. Furthermore, assume that to each compact set K CR, there correspond 

M and ro such that 

Qe 

0 

for all z€K and almost all r in the interval O0<1r<ro. Then f ts almost everywhere 

equal to a holomorphic function in R. 

It is clear that (21) and (22) imply (13) and (14) respectively. For example, 

if (21) holds, given any e>0, there exists a 5>0 such that 

| <e 
0 

for almost all r<8. Then for p<6, 

< ( f 

so that 

< ¢/2, 
1 p Qn 

which in turn implies (13). 

A weaker but interesting consequence of Corollary 2.1 is the following. 

| 

q 
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COROLLARY 2.2. Let f be a continuous, single-valued function in R and let 
{ U;} be an arbitrary open covering of R. Assume that 

(23) f(2)dz = 0 

for every circle C that lies entirely within at least one open set of the covering { U;}. 
Then f is holomorphic in R. 

To prove this, we observe that (23) implies both (21) and (22). Since f is 

assumed to be continuous, the conclusion of Corollary 2.1 may be replaced by 

the stronger statement that f is everywhere holomorphic in R. 
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ON FLETCHER’S PAPER “CAMPANOLOGICAL GROUPS” 

D. J. DICKINSON, The Pennsylvania State University 

In the article Campanological Groups that appeared in this MonTRLY, T. J. 

Fletcher [1] considered, among other things, Thompson’s [3] solution to the 
question of whether the full peal of Grandsire Triples could be generated by the 

use of plain and bob leads alone. Fletcher continues: “Thompson shows this 

to be impossible by proving that plaining or bobbing any Q-set always results 

in the loss or gain of an even number of round blocks. . . . The beauty of the 
proof is marred by the fact that the stage showing that the number of round 

blocks lost or gained is always even, is carried out by along and tedious process 

of enumeration. But it is very difficult to see any means by which this could have 

been avoided. The enumeration of the cosets of a group of large order is in- 
evitably tedious, and modern processes do not seem to offer any way of reducing 

> 
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Thompson’s labors to any marked extent.” 
It is the purpose of this note to supply that portion of the proof that Thomp- 

son and Fletcher were seeking. The notation used is that of Fletcher [1]. The 
proof is derived from a theorem of Rankin [2] who proved a more general result, 

of which this is a special case. 

Suppose that we have a decomposition R; of the 360 leads into round 

blocks and a Q-set {x(PB-)‘}, 4=1, 2, 3, 4, 5, each of whose members are 

bobbed. Let S; be the substitution on the numbers such that j is substituted for 
4 if x(PB-")/ is the first member of the Q-set that occurs after x(PB-')‘ in that 
round block of R; in which they occur. The number of cycles in the substitution 

S; is obviously the number of round blocks of R,; that contain elements of the 

Q-set under consideration. 

In R;, the element that follows x(PB-')‘ is x(PB-')‘B. Now if x(PB-")‘ is 

plained instead of bobbed, the element following becomes x(PB')iP 
=x(PB-')+1(BP-!) P =x(PB-')*!B. Hence we may 

form from R; a new decomposition R, by replacing the succession of x(PB-')‘ 

by x(PB-")‘B by the succession of x(PB-')‘ by x(PB-')‘P =x(PB-")**'B and 

by letting all the other successions remain fixed. With respect to this new de- 

composition R, which was formed from R; by replacing a bobbed Q-set by a 

plained Q-set, and with respect to this Q-set, let S; be defined as S; was with 

respect to 

Now it remains to show that the number of cycles of S; differs, if at all, from 

the number of cycles of S; by an even number. It is apparent that S; is the 
cyclical permutation (12345) followed by 5S. If we write the cyclical permutation 

as a product of transpositions, we have (12)(13)(14)(15)S;=5S.. But multiplica- 
tion of cycles by the transposition (pq) increases the number of cycles by one if p 

and g are in the same cycle and diminishes the number of cycles by one if » and 

q are in different cycles. Since we have four transpositions, the number of round 

blocks with the chosen Q-set bobbed hence differs by an even number from 

the number of round blocks that have the Q-set plained. 
The smallest round block is that formed by a succession of three bobbed 

leads. We have shown therefore that the largest round block formed by bobbing 

and plaining alone cannot exceed 357 leads or 4998 changes. That a touch of 

this length is actually attainable was shown in 1751 by John Holt [4]. 
I should like to remark that the literature dealing with change ringing is 

quite large and that some of the modern publications can be found by consulting 

the weekly journal of the change ringers [5]. 
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CURVES WITH A KIND OF CONSTANT WIDTH 

PAUL J. KELLY, University of California, Santa Barbara College and 
the Institute for Advanced Study 

Consider a simple, closed, plane, convex curve C with the point A in its 

interior. If m is any line through A, there are two lines, ¢ and #, which are sup- 

porting lines of C, at R and R, and which are perpendicular to m at points Q 
and Q respectively (Fig. 1). As m turns about A, the point Q traces a closed 

curve C’ (also traced by Q), which is the pedal curve to C with respect to the 

pedal point A.* The curve C’ is sometimes denoted by P(C), and the curve C, 

which is the negative pedal curve to C’, is also denoted by P~-'(C). The width of 

the curve C, in either direction along m, is defined to be the distance between the 

Fic. 1 

parallel lines ¢ and #, and is therefore the length of the chord from Q to 0 in C’. 
In particular, if C is of constant width then all chords of C’ through A have the 
same length, that is, A is an eguichordal point of C’. 

The previous relationships suggest the method, first given by G. Tiercy,f 
of determining a constant width curve C as the negative pedal of a curve C’ 

which has the pedal point as an equichordal point. If the (polar) equation of C’ 

is r=f(@), where A is the origin, then a supporting line to C has the normal form 
equation, 

(1) x cos 6+ ysin = f(6). 

When C is differentiable, it is the envelope of the family of lines given by (1). 

Regarding @ as a parameter, partial differentiation of (1) yields 

* The notion of a pedal curve was introduced by C. Maclaurin (1698-1746). 

{ G. Tiercy, Sur les spheriformes, Téhoku Math. J., vol. 19, 1921. 
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(2) —x sin @+ ycos @ = f’(6). 

From (1) and (2), the parametric equations for C are, 

= cos — f’(@) sin 6, 

y = f(0) sin 6 + f’(6) cos 8. 

The condition that C’ have the origin as an equichordal point is simply that 

(0) +f(6+7) be constant for all 6. It is apparent from the mechanical considera- 

tion of a stick rotating and sliding about a fixed point that there are an unlimited 

number of such curves. They can be constructed in a great variety of ways, 

even with the extra condition of convexity, for if r=f(@) and r=g(@) are equi- 

chordal at A and are convex, then so is the curve r=af(@)+8g(8), where a and 

B are positive constants. The two properties are also preserved by a rotation 

at A. Starting with one such curve, r =f(@), one can therefore rotate it and then 

form a positive, linear combination of the two curves. This process can be carried 
to the limit by integration. That is, if 4(y) is any nonnegative function, not 

identically zero, then the function 

(3) 

f "0 + 

is convex and is equichordal at A. In an analytic form, a simple class of curves 

which are equichordal at the origin can be expressed by a general, odd term, 

Fourier series, that is, by 

(4) = = a+ a, cos a, cos 30+ --- +a, cos 

where a>0. In particular, if (4) is specialized to the limacgon, r=a+qa; cos 8, 

a,<a, then (3) becomes x =a,+<a cos 0, y=a sin 0, which is the circle, (x —a,)? 

+y?=a*. This is a special case of the fact that, for a finite m in (4), the curves 
(3) are rational and algebraic. 

In order for the curve C to be of constant width, it must of course be convex, 

and a sufficient condition for this is that it have nonnegative curvature at 

all its points. With the tangent to C expressed by (1), it is a standard formula 

that the radius of curvature of C is given by f(6)+/’’(@). Thus Tiercy imposes 

the extra condition on C’ that r+r’’20, and this, with the equichordal property, 
suffices to make C a constant width curve. 

The case, which Tiercy did not take up, that in which r+r” changes sign, 

is also interesting. Assume that C’ is star shaped and equichordal witi: re- 
spect to an interior origin. If the tangent line to C= P-'(C’) has 7 as an angle 

of inclination, then, as in Figure 1, 7 =@ + 90°, and dr/d@ =1. Hence as @ increases 

monotonically in a circuit of C’, the tangent line to C turns in a counterclock- 

wise sense and there are exactly two parallel tangents to C in any given direction. 
As long as r+r”’2=0, the point R on C, corresponding to Q on C’, traverses a 
convex arc. When, however, r+r”’ changes to negative values, there is a cusp 
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point on C, the radius vector to R on C reverses its sense of rotation, and Q 

traverses a concave arc. With the next change of curvature there is another 

cusp, the rotation of the radius vector to R again changes, and the curve C 

crosses itself. Since C is a closed curve, there will be an even number of these 

cusps. The sketch in Figure 2 illustrates such a curve C, where C’ has the form 
r=3+2 cos*@. The parametric equations for C, given by (3), are 

x = — 6 cos? 6 + 3 cos 8, 

y = 3 sin 6 — 4 sin @ cos* @, 
(5) 

and the two tangents in any given direction are six units apart. A closed curve 

having but one tangent in each direction has been called a curve of zero width. 

In a similar sense, the curve of Figure 2 has a kind of constant width. 

Fic. 2 

Because it is the convexity or nonconvexity of C which distinguishes the two 

types of constant width curves, it is natural to ask the following general ques- 
tion. For a given curve C’ what are the possible positions of a pedal point A 

such that the negative pedal curve of C’ with respect to A will be convex? It 
can be shown easily that C will be convex if, and only if C* is convex, where 

C* is obtained from C’ by an inversion with respect to a circle centered at A. 

| 
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In another place, Ernst Straus and the author have given general conditions for 
the inversive convexity of C’, and hence conditions also for the convexity of 
C=P-(C’). 

For the special case considered here, that is when C’ has curvature and A is 

chosen interior to C’, one can describe the convexity of C in the following way. 

Let K denote the circle of curvature of C’ at a point Q. As Q moves about C’ 

in a circuit, so does K. So long as the origin, namely the interior pedal point, is 

within, or on K, then the point R on C, corresponding to Q on C’, traverses a 
convex arc, and when A is outside K then R is on a concave arc of C. Thus, the 

cusps of Figure 2 correspond to A passing in and out of the curvature circles of 

C’, and one can see from this that there will be an even number of cusps. A 

standard, pedal curve relationship is that the circle on AR as a diameter is al- 

ways tangent to C’ at Q (Figure 1). When R is a cusp point of C, this circle is 

also a circle of curvature of C’. 

FILTERS AND EQUIVALENT NETS 

M. F. SMILEY, State University of Iowa 

The purpose of this note is to introduce a natural equivalence relation be- 

tween nets [5] in such a way as to bring filters [3, 4] and classes of equivalent 
nets into one-to-one correspondence. Our equivalence relation for nets stems 
from a theorem of Bruns and Schmidt [2, p. 184], while our correspondence 
rests on results of R. G. Bartle [1]. We feel that our discussion helps to clarify 

the concept of subnet [5]. The present self-contained version of our note is 
presented at the suggestion of a referee. 

Let us first agree on certain matters of notation and of terminology. The 

notation a: S—T denotes a map a of a set S into a set T, a(s) denotes the image 

of s©S under a, and a(S;) denotes the set of all a(s:) with s,;xES;. We write 

a o B for the composite of a and 8: T-U so that (a 0 B)(s) =a(B(s)). A relation 

S partially orders a set P in case S is reflexive and transitive. In a partially 

ordered set P, we put p+ = [gE P: g=p] for each pEP, and we call P a directed 
set in case p*+(\g* is non-empty for every p, gEP. A family B of non-empty sub- 

sets of a set X which is directed by inverse set-inclusion is called a filter-base in 

X. The totality of filter-bases in X will be denoted by @(X). If 8, DE @(X), 

then D refines B (which we write D > B) in case every set in B contains some set 

in D. When D> B and B>D, we call B and D equivalent and write B~D. We 
call 8, DEB(X) compositive in case BVD=[FANG: FES, GED) is a filter 
base in X. (Thus @(X) is a partially ordered set which is not a directed set un- 

less X has only one element. We have borrowed the term compositive from the 

work of E. H. Moore [7] since we feel that this important relation between 
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filter-bases deserves a name.) A filter in X is a filter-base in X which contains all 

supersets of each of its members. A net in X is a map a: AX, where A is a 
directed set. A net 8: B—X isa subnet of a net ain case B=a 0 7, where 7: BA 

is convergent in the sense of E. H. Moore [7, p. 34], i.e., there is a map p: A>B 
such that r((p(a)+) Cat for every 

Each net a: AX gives rise to a filter-base B(a) = [a(a+): aE A] in X. We 
write F(a) for the filter based on B(a), i.e., F(a) is the family of all supersets of 

members of B(a). If @E@(X), we may define A(S)=[(x, F): r*EFER], 
(x, F) S(x1, Fi) in case FC Fi, and B((x, F)) =x to obtain a net B=N(Q) in X. 

(This is the substance of the footnote on p. 554 of [1] as well as of 2.L(f) of [6].) 
It is easy to verify that B(N(%S)) =% for every BE @(X). 

A topology in a set X is specified by a map r: X->@(X) such that xE U for 

every UCr(x). A point r-adheres to a filter-base in X in case r(xo) and 

$ are compositive. A point x»€X r-adheres toa net ain X in case x9 T-adheres to 

F(a), or, equivalently, to B(a). We shall call a net a in X as fine as a net B in X 

and write a2 in case every point of X which r-adheres to 8 also r-adheres to 
a for every topology r of X. 

LemMA. For nets a, B in X, we have a=B if and only if F(a) CF(6). 

Proof. Let us assume that a26 and suppose that some FEF(a) is not in 

F(8). Then F’(\G#¢ for every GEF(6), since yields GCF, FEF(6), 

a contradiction. We obtain a topology in X by setting r(x) =[[x]] for every 
x€F and r(x) =[F’NG: GEF(8) | for x F’. But then every x in F’ r-adheres 

to B, while no x in F’ r-adheres to a, contrary to our assumption, a28. We have 

proved that a=8 implies F(a) C F(8). The converse is trivial. The proof of the 

lemma is complete. 

It is now easy to see that a28 if and only if B(8) > B(a). It is also clear that 

ifa=B and: isa map of X into Y, thenyn oa~and7 0 Bare nets in Y such 

that 70a2n08. Thus the convergent maps of E. H. Moore are just those 

maps 7: B—A for which e427, where eg is the identity map of A onto A. The 

subnets 8=a 0 7 of @ then satisfy a28 but, even for finite X, it is possible that 

a2=B while B is not a subnet of a. (See, however, the remark contained in our 

final paragraph.) 

It seems reasonable, now, to call two nets a, 8 in X equivalent and to write 

a~B in case a=B and B 2a, 1.e., a~8 if and only if F(a) = F(8), a~@ if and only 

if B(a)~B(8), since when this is true there is no topology in X which will dis- 

tinguish between them. Using this notation, we have N(B(a))~a for every net 

ain X because B(N(B(a))) =B(a). The maps B and N establish a one-to-one 

correspondence between the classes of equivalent nets in X and the classes of 

equivalent filter-bases in X; while the maps F and B serve the same purpose for 

filters in X and classes of equivalent nets in X. 

Let us add one further observation concerning subnets. In the present nota- 

tion, Kelley’s fundamental lemma on subnets [5, p. 278] can be given a slightly 
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more precise form. Let a be a net in X, % a filter-base in X compositive with 

B(a). Let y((x, a, B)) =x for aE A, BEB, and xEa(at)MB. Define (x, a, B) 

<(y, a1, B:) in case aa; and B,CB. Then it is easy to see that y is a subnet of 

a such that B(y) = SVB(a). When a=8 and 8 =B(8), we see that is a subnet 

of a such that y~8. If we permit ourself the luxury of identifying equivalent 

nets, we may regard the expressions “a=” and “8 is a subnet of a” as synony- 

mous. In the course of the preparation of this note, we have become aware 

(through conversation) of an unpublished theory of set-nets developed by B. J. 
Pettis. Pettis gives a generalization of the notion of subnet which is equivalent 
for point-nets (that is, for nets) to the relation a28 of the present note. The 

discussion of “ultimate” concepts in the present notation is left to the interested 

reader. 
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MATHEMATICAL NOTES 

EpITED By IvAN NIVEN, University of Oregon 

Material for this department should be sent to Ivan Niven, Department of Mathematics, 

University of Oregon, Eugene, Oregon. 

CONVERGENCE OF SERIES WITH POSITIVE TERMS* 

E. Bayis SHANKS, Vanderbilt University 

1. Introduction. It is the purpose in what follows to prove necessary and 
sufficient conditions for convergence of series with positive terms that serve as 

a general framework for short proofs of the sufficient conditions of many of the 
known tests for convergence or divergence of such series (see [1], [2], [3]). 

It will be understood that each series considered will be a series with positive 

terms unless the contrary is stated. 

2. Necessary and sufficient conditions. As the basis of the conditions to be 

proved, we suppose as known the general criterion that a series with positive 

* Presented to the Southeastern Section of the Mathematical Association of America, March 

20, 1954. 
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terms is convergent if and only if its partial sums are bounded. 

THEOREM 1. A necessary and sufficient condition that a series ) a, with positive 
terms converge 1s that there exist positive numbers p, and a nonnegative integer k 
such that for eachn=1,2,---. 

Proof. The condition is necessary since, for k=0, we may take pa= ) 2, a. 

On the other hand, the condition implies p1>1—Pasi> Hence the 

partial sums of the series are bounded above by $1+5%, where s; is the kth partial 

sum. Therefore the series is convergent by the general criterion and the condition 

is sufficient. 
The condition is necessary but its use in practice will be due to its sufficiency. 

For this reason, the following theorem is included for use in tests for divergence. 

THEOREM 2. A necessary and sufficient condition that a series ) a, with positive 

terms diverge is that there exist an unbounded set of positive numbers p, and a 

nonnegative integer k such that 0<pasi—pn for each n=1,2,+--. 

Proof. The condition is necessary since, for k=1, we may take p,= > a. 

On the other hand, the condition implies Hence the partial 

SUMS Sgyn are not bounded above since the set of numbers /,4: are increasing 

and unbounded. Therefore the series is divergent by the general criterion and 
the condition is sufficient. 

3. Tests for convergence and divergence. In order to set up a test for con- 

vergence, we only need to specify a nonnegative integer k and a set of positive 

numbers p, and require that the inequality in Theorem 1 be satisfied. For exam- 

ple, if }°c, is a convergent series, a set of positive numbers is defined by the 

equation Pa= > jens and Hence, for k=0, the inequality of 

Theorem 1 requires that c,>a,, which is the familiar comparison test. Similar 

remarks hold for tests for divergence based on Theorem 2. 

Because of the principle explained in the preceding paragraph, we will list 

the choices of k and p,, which, when associated with the inequality in Theorem 1 

or Theorem 2, immediately give many of the familiar tests. The tests for con- 

vergence below have reference to Theorem 1 while those for divergence have 
reference to Theorem 2. ‘ 

Comparison test. 
Convergence: Ci, R=0; > convergent. 
Divergence: pu= di, k=1; > d, divergent. 

Root test. 

Convergence: p,=0"(1—8)—', 0<0<1, k=0. 

Divergence: p,z=n, k=0. 

Ratio comparison test. 

Convergence: Pn=(a1/c1) > sen Cx, R=0; > c, convergent. 
Divergence: pa=(ai/d:) > 7-1 di, R=1; divergent. 
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Remark 1. The last test will appear in its familiar form when we observe that, 

for convergence, the condition is satisfied if we require @n41/@n<Cn41/Cn; while, 

for divergence, the condition is satisfied if we require @n41/@n >dn41/dn. 

Ratio test. 
Convergence: p,=a,/0,0>0, k=1. 

Divergence: p,=nd;, k=1. 

Remark 2. For divergence, the condition is satisfied if a, <@n4:. 

Raabe’s test. 
Convergence: p,=na,/0,0>0, k=1. 
Divergence: pPa=d1 1/i, R=1. 

Remark 3. For divergence, the condition is satisfied if man<(m+1)an4:. Here 

the divergence of the harmonic series has been assumed. Later it will be shown 

to diverge as a consequence of Theorem 2. 

Integral test. 
Convergence: pr=Jnf(x)dx, f(n) =an, R=1. 
Divergence: pn=Jif(x)dx, f(m) =an, R=0. 

Remark 4. For convergence, it is assumed that the improper integral con- 

verges; for divergence, that it diverges. Each condition is satisfied if f(x) is 

monotonely decreasing. The test, as given, is more general than Cauchy’s 

integral test since it does not require that a, >d@n4: nor that f(x) decrease mono- 
tonely. 

Kummer’s test. 

Convergence: d,>0, k=1. 

Divergence: d,>0, D,>0, R=1. 

Remark 5. It is easy to see that these lead to necessary and sufficient condi- 

tions, since they are essentially a restatement of Theorems 1 and 2 with a 

change in notation for the set of positive numbers p,. The necessity of Kum- 

mer’s conditions seems not to have been known previously (see [1], [2], [3]). 
For divergence, the condition is satisfied if we require the divergence of >>1/d, 
and that dadn<@n4:dn41, since then there exists an unbounded set D, such that 

0 —D, the, 1/dn4. 

Abel-Dini-Pringsheim test. Let }-d, be a divergent series and D, be its mth 
partial sum. Let 0=1+p>1+1/m, where m is a positive integer. Then the 
choice p, =m/D¥", and the inequalities 

1/m 1/m 
— m/Di!” > Da — > > 

together with Theorem 1, prove the convergence of the series >-d,/D%, é>1, 

as well as a series with any one of the terms in the inequalities as general term. 

. 

| 
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Similarly, the choice p, = 6 <1 leads to the divergence of the series 

Remark 6. Cauchy’s condensation test and Ermakoff’s test can be derived 

as special cases of those already given. It should be clear now that the list of 
tests can be enlarged with ease by the proper choice of the numbers p,. Rather 
than this, we will develop the theory along another line in the next section. 

4. Convergent and divergent series. The following theorem is useful to ob- 

tain specific convergent series. 

THEOREM 3. If f(x) and —f’(x) are positive functions and —f'(x) is monotonely 

decreasing for x>1, then the series >. —f'(n) converges. 

Proof. The hypothesis and the mean value theorem imply f(x) —f(x+1) 

= —f'(x+6) > —f’(x+1), where 0<@<1. Hence it follows from Theorem 1 that 

the series }> —f’(n+1) (and thus also >> —f’(m)) converges. 

Note that —f’(x) is monotonely decreasing provided f”’ (x) >0. This immedi- 

ately implies the convergence of the following series: 

> or, O<r<i1;_ f(x) = = —alogr, 

> bn--*, 6> 0; f(x) = ax, b= a8, 

O(n log + f(x) = a (log, x)-*, 

where log, m denotes log log - - - log m with p operations and b=a8. This list 

could be enlarged without difficulty. 

THEOREM 4. If f(x) is a positive unbounded function and f'(x) is a positive, 
monotonely decreasing function for x>1, then the series >_f'(n) diverges. 

The proof follows immediately from the mean value theorem and Theorem 2. 

From this theorem, it is seen that the following series diverge: 

> br, o> a; f(x) = ar*, b=alogr #0, 

> bn-**, O<0<1; f(x) = ax’, b= a ¥0, 

b(n log n- O<O<1, f(x) = a(logyn)’, 

where b =a00. Note that the last case includes the divergence of the harmonic 

series for a=0=p=1. 
The last two theorems may be restated so as to be used directly as tests. 

This is done in the next theorem for Theorem 3. 

THEOREM 5. If an indefinite integral of f(x) is a negative function and f(x) is a 
positive, monotonely decreasing, and continuous function for x>1, then the series 

converges. 
It is interesting to observe that the last theorem is an “integral test” without 

a direct reference to an improper integral. 
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POLYNOMIALS WITH THE BINOMIAL PROPERTY 

H. L. Krai, The Pennsylvania State University 

Let us call { (x) = ban¥~0} a binomial set of polynomials if the 

relation 

is satisfied. Two examples of binomial sets are the powers, {x"}, and the fac- 
torial polynomials { x(n) =x(x—1)--- (x—n+1) } . It seems worth while to 

point out that binomial sets are (except for constant multipliers) the basic sets 

of polynomials of type zero introduced by I. M. Sheffer.* His basic polynomials 

are defined by his theorem: 

Let J(B) - (C,x=constant, To each operator J there 

corresponds one and only one polynomial set { Bn(x) } (which we call the basic set) 
such that 

Box) = 1, B,(0) =0, n>O0, J(B,(x)) = Ba-s(x). 

The assumption, c, =constant, classifies J as a type zero operator. For the 

case where the operator is sin D, 

1 1 
J(B) =B 31 BY + ry B 

and the polynomial sets are 

binomial set: 1, x,  <x?, x xt + 427, 10x37 + 9x, ---, 

1 1 1 1 
basic sel: x?, (a? + x), + 427), (x5 + 10x* + 

To show the correspondence between basic and binomial sets, we start with 

TuHeEoreM 1. If {B,(x)} is a type zero basic set, then {n!B,(x)} is a binomial 
set. 

This result follows at once from Sheffer’s relation e*#( = }°2, B;(x)t' by 

equating powers of ¢ in 

e7H = = > Bry) = > Ba(x + y)t*. 
i=0 n=0 n=0 

Before proceeding to the converse theorem, we note 

THEOREM 2. If {b,(x)} is a binomial set, then bo(x) =1, bn(0) =0, n>0. 

* I. M. Sheffer, Some properties of polynomial sets of type zero. Duke Math. J., vol. 5, 1939. 

[May 

: 



1957] MATHEMATICAL NOTES 343 

The first two equations of (1) are 

bo(x + y) = bo(x)bo(y), bile + y) = bo(x)dily) + bi(x)do(y). 

Thus the constant bo(x) =1. Setting x=y=0 in b;(x+y), we get 5,(0) =0 and 

an induction gives b,(0) =0, 

THEOREM 3 (converse of Theorem 1). If {b,(x)} is a binomial set, there exists 

a type zero operator J whose basic set is { (1/n!)b,(x) } : 

Having Theorem 2, it suffices to produce an operator J such that 

J(bn(x)) = nbn_i(x), J(y) = ery’ + coy” + (1 0). 

Simple algebraic manipulation will procure a few terms of J. If bo(x) =1, bi(x) 

=ax, bo(x) =a?x?+bx, ---, the operator is J(y) =(1/a)y’—(b/2a*)y"+ ---. 

A step-by-step process will produce the remaining terms uniquely. Suppose that 

the operator J,_; has the properties 

1 

This operator possesses a unique basic set 

1 1 
bo(x), bn_i(x), b,*(x), 

nN: 1! 

whose first ” terms coincide with the given binomial set (except for the con- 
stant multipliers). From Theorem 1, bo(x), - - - , bna(x), D(x), - - - , must also 

form a binomial set. A relation connecting b,(x) and b¥(x) can be obtained 

from (1): 

n—1 n 

= + 3) — Bale) — = 3) Bia) BAG). 
t=1 

If b,(x) = >-%., rex‘, the expansion of the above expression is 

ba(x + y) — ba(x) — daly) = + + 2rex]y + terms in y’. 

Since the expression obtained from 6%(x) must be identical with this, the two 

nth degree polynomials can differ only in their coefficients of x, i.¢., 6, (x) 

=b*(x)+cex, c=rn—rf. Let Jn=Jn1—(c/aran!)D*. Then 

Tn(bn(%)) = + — + cx] 

= mbn_i(x) + (c/a) — = 

Thus (1/n!)b,(x) is a basic polynomial of the operator J,, and { (1/n!)b,(x) } is 

the basic set of the operator J=J,.. 
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SOME INEQUALITIES INVOLVING HERMITE POLYNOMIALS 

ARTHUR E. DANEsE, Rochester, New York 

Problem 4215 [1946, 470], this MONTHLY, indicates that 

n—1 

= Ha(2) — = (n — 

where H, (x) =(—1)"e”/*d"(e-*/)/dx" is the Hermite polynomial of degree n. 

From this we obtain immediately the inequality 

(1) A,(x) > 0, all x, n > 1. 

Mukherjee and Nanjundiah in [1] establish the identity nA,(x) = [H,/ (x) ]? 
— H,(x)H,!' (x), with which (1) can also be proved. Sharper estimates of (1) 

may be found in [2] and [3]. The corresponding inequality with the derivatives 
of Hermite polynomials is treated in [4] and [5]. 

Toscano in [6] establishes the identity 

{n/2] 

= — = 2am! — 21)! 
t=0 

from which follows 

(2) 5,(x){=0, x= n> 0. 

<0, «<0 

Toscano also shows that A,’ (x) = (m—1)6,-2(x). Hence 

>0, x>0 

(3) Ad (x){=0, x=07, n> 2. 

<0, 

In this paper we establish similar inequalities. First, (1) has two immediate 
generalizations of a different nature: 

(4) [Ha(x) — [Aagi(x) > 0, 
r a positive integer, all x, m > 1. 

Simple examples indicate that if 27+1 is replaced by an even integer, the 
inequality is no longer valid. 

(5) Hy(x) — >0, OS R<1, alla,n>1. 

One can show that for k outside this range, the expression on the left changes 

sign. 

Next we show that 

[May 

= 
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(n + 1)H.(x) — (nm — 1)Hy2(x)Hn-2(x) > 0, all x, m > 2, with equality for 
6 
©) x = 0 only. 

Using the recurrence relation 

(7) Anyi(x) = xH,(x) — nHy-1(x), 

the left-hand side of (6) can be written as x6,_;(x), and the result follows from 
(2). H3(x) —Ho(x)Hi(x) =4x?—2 shows that n+1 and n—1 cannot be replaced 

by unity in (6). 

We now prove 

>0, 

(8) — {=0, x =O}, n> 1. 
<0, «<0 

Using the relation 

(9) Hy (x) = nHy-1(x), 

the left-hand side of (8) becomes — (nm —1) Hagi(x) Hn-2(x). Using 

(7) to replace Hy1(x) and H,-2(x) in this expression, yields H,(x)H,! (x) 

— Aya1(x)H,!1(x) =xA,(x), and the result follows from (1). 

Next we show that 

(10) [H.(x) — < 0, all x, n > 1. 

With the use of (9) and the differential equation 

(11) Hy’ (x) — (x) + nH,(x) = 0, 

we obtain 

— = n — Ay-1(x) — + J. 

The use of (7) and (9) to eliminate Hy4:(x) and H,'4;:(x) respectively then yields 
[H, (x) = —nH2_,(x), from which the result follows. 

Now, we show 

[Hi(x) ]? — Hays(x)Hn_s(x) > 0, all x, m > 1, equality for x = 0 and n 
(12) 

odd only. 

Multiplying by m both sides of the inequality in (6), we obtain 

n(n + 1)Ha(x) — n(n — 1)Ha42(x)Ho-2(x) > 0. 

Then 

(nm + 1)Ha(x) + n(n + 1)Hy(x) — n(n — > 0, 
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or 

(n + 1)'H.(x) — n(n — > 0, 

with equality for x =0 and n odd only. Using (9) leads to the result. 

Next, we have 

— 
odd only. 

(13) (x) > 0, all x, n > 2, with equality for x = 0 and n 

With the use of (9), the left-hand side of (13) becomes n?[Hj_,(x)]? 
—n(n—1)H,(x)Hj2(x) and the result follows by (12) since n(n—1)/n? <1. 

Next we establish the identity 

(iv) (14) (2) = — 
With the use of (7) and (9), we have 

nAn(2) = — xHa(x)Ha(2) + 

Using (11), we can write 

mAd (x) = x[H (x) — Ha(x) Hd (2) — He! (2). 

Then nA,!’ (x) =xH,! (x) (x) —2H,(x) (x) —xHa(x) Ht" (x). From (11) we 

obtain (x) =xH," (x)+(2—n)H' (x), which with the above yields the 
result. 

(15) A,’ (x) > 0, all x, m > 2, with equality for x = 0 and n odd only. 

In general, the derivatives of A,(x) of order greater than 2 do not remain of 

one sign in any half line. 
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A GENERAL FORMULA FOR CIRCULAR PERMUTATIONS 

WEn-Hovu Sara, National Taiwan University, Taipeh, Taiwan 

The general formula for circular permutations does not seem to have been 

discussed in textbooks. In this note, we establish a general formula for the 
number of circular permutations of a set of m objects containing similar ele- 

ments. We first prove the following: 

THEOREM 1. Let the set of n objects contain r; elements ay, r2 elements do, + + + , Pp 

elements ay. Let h be the highest common factor of r, (v=1,--+, p). Then, if his 

a prime, the number P of circular permutations of the n objects is given by 

(n/h)! \ ((n/h) — 

+++ (rp/h)! (7:/h)! +++ (rp/h)! 

Proof. Since h is a prime, we can divide the objects into A similar sections, 
each containing 7:/h elements a, - - , elements ay. If each section is de- 

noted by [C], the objects may be arranged as 

(2) [C]+ [c]+---+ Ic] (to h terms). 

Take, for instance, a special permutation [C,] formed by permuting the ele- 

ments of [C]. If we arrange the given m objects as [C,]+ ---+[C,] (toh 
terms), then this is clearly one of the permutations of the m objects. This permu- 

tation, as a circular permutation, is unchanged if we shift the first element to the 

end, the second to the end, and so on, and at last, the 2/hth element to the end. 

Thus, the linear permutations of the objects formed by linking h similar sec- 

tions of [C] is in an n/h: 1 correspondence with the circular permutations of the 
n objects formed by the same method of linkage. Since r:/h, - - - , r,/h have no 
common factor, we cannot divide into further sub-sections of elements. Now, 

the number of linear permutations obtained by linking h of the sections [C] of 
the same form of permutation is equivalent to the number of the linear per- 

mutations formed by permuting the elements of [C]. If & denotes the number 

of linear permutations of each [C], it is known that 

(n/h)! 

It is also known that the number K of linear permutations of the objects is 

given by K=n!/(rn! - - - r,!). It is evident that there is an m: 1 correspondence 

between the linear permutations and the circular permutations of the n objects, 
except for the above permutations formed by linking / similar sections [C]. 
Therefore, it follows that P = (1/n)(K —k)+k/(n/h), and this is the result given 
in (1). 

We obtain the following corollary by taking h=1 in Theorem 1, since the 
number of circular permutations cannot be a fraction. 

(1) P= (1/n) {- 

(3) 

= 

£ 
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COROLLARY. Jf 71, + + , fp have no common factor, then (n—1)!/(ri! - rp!) 
is an integer. | 

By means of Theorem 1 we can prove the following: 

THEOREM 2. In the notation of Theorem 1, let h=hohy - - - hm, where ho=1 

and hy, hm are primes, and let Hy=hohy - - - hy. Then 

(4) imo (rp/Hs)! Higa)! + (7 p/ Hens)! 

((n/h) — 1)! 

Proof. We divide the n objects into h; similar sections [C,], each containing 
r:/H, elements a, - - - , elements ay. Next, we divide [C,] into similar 

sections [C,], each containing elements a, - - - , r>/H2 elements ay. By 
successive similar operations, we arrive at [C,], which contains r,/H,, elements 
a1,°-*-*, tp/Hm elements a,. From the given conditions it is seen that 
11/Hm, + * + ,%p/Hm have no common factor. By Theorem 1, we know that the 

relation between the linear permutations formed by linking hf, similar sections 

[C,] and the circular permutations for the same arrangement is an n/Hj: 1 cor- 
respondence, the relation between the linear permutations obtained by linking 

he similar sections [C,] and the circular permutations for the same arrangement 

is an »/H2: 1 correspondence, and so on. If we write 

(n/H;,)! 

+++ 

then, from ‘he arguments of Theorem 1, it is easily seen that 

m—1 1 

P= k;—k 

and this is the result given in (4). 

(i = 0,--+,m), 

BEST FITTING INTEGRAL CURVES OF LINEAR DIFFERENTIAL EQUATIONS 

C. L. SEEBECK, JR., and H. HoEuzer, Redstone Arsenal 

1. We are given a set of points (xz, #4) R=0, - - - , m. These points are num- 

ber pairs, the numbers representing measurements obtained by physical experi- 
ment. They differ from a set of points (xz, yz) which lie on an integral curve of 

some linear differential equation of known order and known driving function 
by the random error usually present in any set of physical measurements. We 

wish to determine the coefficients of the differential equation together with a 

set of initial conditions so that the resulting integral curve will be a best fitting 

q 

+ = 
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curve for the given set of data. The term “best fitting curve” will be defined 

after some preliminary theory has been developed. We proceed to a more special 

problem. 

2. Given a differential equation 

(1) boy + diy’ + = D(x), 

where D(x) is a function such that 

= f x*D(x)dx 
0 

are finite constants not all 0 for all k=0, ---, 2m and the & are disposable 

parameters. Let y= F(x) be a function with this same property that 

= 

exist for R=0,---, 2m. 

THEOREM. [f there exist a set of numbers by such that y= F(x) is a solution of 

(1), then this set is uniquely determined by M, and M, provided the determinant 

| C,,;| #0 wherei=1, ---,m+1,j=1,---,m+1, and 
k=i+j-—2. 

Proof. Let the Laplace transform of F(x) be f(s) = &[F(x) ]=J¢ F(x)e~*dx. 
Differentiating gives the expressions 

(2) f(0) = (-1)'M 
for the first 2m derivatives of f(s) at s=0, their existence being assured by the 

assumption that M; exist. Similarly if g(s) is the Laplace transform of D(x), 

then g(0) =(—1)*M;, k=0, - - -, 2m. Then 

g(s) + aot ais t+ +++ + 
3 = ’ 

where 

(4) a, = >, bF**-(0). 
kyl 

Equations (2) and (3) will now be used to obtain 2m+1 equations for deter- 

mining the 2m+1 parameters a; and by. The equations are all linear in a, and 

and may be found by the following device. 

Expand f(s) and g(s) by MacLaurin’s series. Then the coefficients c and d;, 

respectively, are given by 

is 
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(5) ce = = (—1)*M;/k!, dy = (—1)*M,/k!. 

Multiplying both sides of equations (3) by bb +d:is+ - - - +5,s" and equat- 

ing the coefficients of like powers of s gives 

(6) a, = Coby + + ++ + — dk, 

(7) Crom + Cep10m—1 + = = 0,---,m. 

Under the conditions of the theorem equations (6) and (7) have a unique 

solution and the theorem is proved. 

The homogeneous case can be solved by setting D(x) =0. If | Ci.5| 0, then 

each b, =0 by the previous theorem and there exists no homogeneous differential 

equation which has y= F(x) as its solution. However, if the rank of the matrix 

IC.sll is m and y= F(x) satisfies such a differential equation it is unique since 

equations (7) now determine uniquely the ratios of the b,’s. 

3. The theorem of the preceding paragraph is true under much weaker con- 

ditions on F(x) and D(x). We demand only that there exist a p20 such that 

0 0 

exist for k=0, - - - , 2m. For if we transform (1) by the transformation Z =e-?*y, 

the new equation becomes 

(8) BoZ + + BoZ" +--+ + = 

If y= F(x) is a solution of (1), then Z=e-?*F(x) is a solution ef (8). By the 

above theorem the B; are determined uniquely and the inverse transformation 

will produce equation (1) uniquely. 

4. Definition: Let y=G(x) be a curve such that 

= f x*G(x)e~?*dx 
0 

exist for some p=0 and for k=0, - - , 2m. A curve y= F(x) is a best fitting integral 

curve of a linear differential equation (1) with respect to y=G(x) and for a given p 

af it satisfies (1) and tf 

f x*F(x)e-?*dx 
0 

exist and are equal to py. 

We return to the problem of the first paragraph. Let y = G(x) be an arbitrary 

curve containing the point set (xx, j.). Compute the moments yu; and then com- 

pute d, and c, replacing M; by ux. Equation (7) is solved for the values dx. 

Equations (6) and then (4) are used to compute the initial conditions. An 

— 
\ 
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analogue computer may now be used to draw y= F(x), or equation (1) with 

computed initial conditions may be used to solve for y = F(x). 
If y=G(x) does not approximate an integral curve of (1), the best fitting 

integral curve may be of little value. However, the method may be very useful 

for fitting curves which approach the x-axis asymptotically where polynomial 

curves are impractical. Many such curves approximate integral curves of linear 

homogeneous differential equations. When applicable, the method provides an 

excellent means of preparing tabular data for use in an analogue computer. 

A SUBSET OF THE COUNTABLE ORDINALS 

Mary ELLEN Rupin, University of Rochester 

Let A be the space of all countable ordinals with the order topology. There 
are two obvious types of uncountable subsets of A: 

(1) sets which contain some uncountable closed set, 

(2) sets which are contained in the complement of some uncountable closed set. 

The purpose of this paper is to show that there is a third type of uncountable 
subset of A: 

(3) sets which intersect every uncountable closed set but which contain no un- 
countable closed set. 

This was surprising to the author primarily because of the following fact: 

(A) the intersection of any countable family of sets of type (1) ts again a set of 

type (1). 

Proof of the existence of sets of type (3). Let f be a one-to-one transformation 

of A onto a subset of a line L. For each positive integer , let X, be a countable 

collection of intervals covering L of length less than 1/m such that, for »>1, 

X, is a refinement of Xq_1. For x in X,, let \(x) be the set of all a in A such that 

f(a) is in x. We will show that, for some x, A(x) is of type (3). 

Let us assume that there is no ” and x in X, such that A(x) is of type (3). 

We will now show that there are intervals x; Dx2)x3_ -- + such that, for each 

n, x, belongs to X, and X(x,) is of type (1). By (A), Ma-1 A(%n) is uncountable, 

but this is impossible since fM,2, x, is a single point and f is one-to-one. 

The complement of every countable set and of every set of type (2) is of 

type (1). Therefore, by (A), at least one term x; of X; is such that A(x) is of 

type (1). Similarly, if x, has been defined as a term of X, such that A(x,) is of 

type (1), then by the same argument there is a subinterval x,4: of x, belonging 

to Xn41 such that A(xn41) is of type (1). 
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GENERALIZATIONS OF THE THEOREM OF CHASLES 

R. STEINBERG, University of California, Los Angeles 

1. Introduction. We are concerned here with generalizations of the following 
classical result due to Chasles [4]: 

If the vertices of one triangle are the poles of the sides of another triangle relative 

toa symmetric plane polarity, and, if the lines joining corresponding pairs of vertices 

of the two triangles are well defined, then these lines are concurrent. 

Using the language of inner product spaces, it is possible to state and prove 

these results in a way that does not depend essentially on the dimension of the 

space involved. The principal tool used is the Parseval identity relative to a 

complete biorthogonal set of vectors. In the next section, we look at the finite- 

dimensional case (which has previously been considered in [1], [2], [3], [4]); 
in Section 3 we remove this restriction. 

2. The finite case. Throughout this section, we assume that we have an 
n-dimensional vector space V over an arbitrary field together with a scalar- 

valued, bilinear, symmetric, non-degenerate inner product (x, y) defined for 

pairs of vectors x, y in V. Consider now the following theorem (cf. [1], [2], [3]): 

THEOREM. Assume given 2n vectors u;, ¥;,1=1,---, mn, and a plane II such 

that (1) the u’s and v's form a biorthogonal set, (u;, vj) =5;;, (2) the vectors u; and 

v; are linearly independent for each i=1,---, mn, and (3) the plane II contains 
non-zero vectors orthogonal to the planes II; = { us, v;} ,t=2,---+,m. Then the plane 

II also contains a non-zero vector orthogonal to 11, = { 1, v1}. 

We first remark that the theorem of Chasles, restated, is the case »=3. 

Next, we note that each condition of (3) can be stated in several equivalent 
ways: II; contains a vector orthogonal to II, or, the orthogonal complement of 
II contains a non-zero vector in common with I];. The next lemma gives yet 

another such condition which we use in the proof of the theorem. 

Lemma. If x and y form a basis for the plane II, then the plane II contains a non- 

zero vector orthogonal to Il; if and only if (x, u;)(y, vs) — (x, 04) (y, us) 

Proof. The non-zero vector ax+y of II is orthogonal to Il; if and only if 

(ax+By, u;)=0 and (ax+By, v;)=0; i.e. a(x, us)+B(y, us) =0 and a(x, %) 
+£8(y, v;) =0. These last equations have a non-zero solution for a, 8 if and only 

if (x, us) (y, — (x, v;) (y, =(), 

Proof of Theorem. By the Parseval identity we have 

(*) (x, 9) = 

Interchanging x and y, we get (y, x) = (y, u:)(x, 04). Since (x, y) =(y, *), 

this gives 

ta 

7 4 

¢ 

“he 

ae 

+ 

= 

bigs 
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> [(x, us)(y, 01) — (x, 0:)(y, ws) ] = 0. 

By the hypotheses (3), and, by the lemma, (x, u,)(y, 0s) —(x, 0:)(y, us) =0, 

i=2,---+,m. Thus (x, u1)(y, 01) —(x, 11) (y, =0; and, again by the lemma, II 
contains a non-zero vector orthogonal to I). 

The following corollary is almost immediate: 

COROLLARY. The theorem remains valid if, throughout the statement, we replace 

n by m and the condition (1) by: (1’) the u’s and v's are the images of a biorthogonal 

set of vectors under an orthogonal projection of an m-dimensional superspace W 

onto V. 

The proof consists of a simple verification of the Parseval relation (*) under 

these circumstances. 

3. The infinite case. We now assume that V is real Hilbert space and set 
n=, In this case the theorem remains valid if condition (1) is replaced by: 

(1’’) the u’s and v's form a biorthogonal set, the u’s are complete, and there exist 

positive constants m, M such that 

k 
< u) $M kR=1,2,--+-; 

t=1 t,j=1 

or, briefly, the Gramian matrix ((u;, u;)) is bounded above and below. 

The condition of completeness is necessary since, even in the finite case, the 

theorem is not valid if there are fewer u’s than the dimension of V. The bounded- 

ness condition ensures the Parseval relation (*) and hence a proof of this ex- 

tended result. Indeed, this follows from Theorems 3, 4, and 8 of [5]. 
Finally, we note that the corollary of Section 2 admits a similar extension to 

the infinite case. 
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C onto AB establishes the equality of the cross-ratios {x D, CB } , { Y’C, EA }, 

{2’B, AF}. Further 

{XD,CB} x {XC, BD} x {XB, DC} = 

CLASSROOM NOTES 

By C. O. Oakey, Haverford College 

All material for this department should be sent to C. O. Oakley, Department of Mathe- 
matics, Haverford College, Haverford, Pa. 

ON THE THEOREMS OF CEVA AND MENELAUS 

H. G. Green, The University, Nottingham, England 

The following combined proof, based initially on purely projective methods, 

of the two theorems may be of some interest. 

Let ABC (Figure 1) be a triangle lying in a real extended Euclidean plane 
and P any point in the plane not on a side of the triangle. Let AP meet BC in 

X, BP meet CA in Y and CP meet AB in Z. Suppose DEF is a finite straight 
line in the plane through none of the points A, B, C, or P, and let it meet BC 

in D, CA in E, AB in F. Since not all of the non-collinear points X, Y, Z can be 

on DEF we can assume without loss of generality that X does not. Let DEF 

meet AP in Q, BQ meet AC in Y’ and CQ meet AB in Z’. For the present we will 

consider all the elements of the configuration to be real. 

Q 

Fic. 1 

Projecting the points Q, D, E, F from A onto BC, from B onto CA and from 

XC-DB XB-CD BC 

XB-DC XD-CB’ XC-BD 
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Since {XD, CB} ={ Y’C, EA} it follows that {XC, BD} ={Y’E, AC}, and 
since {XD, CB} ={2Z’B, AF} that {XB, DC} ={Z’F, BA}. Hence 

(1) {XD,CB} x {Y’E, AC} x {Z’F, BA} = —1. 

Projecting the points Q, P, A, X from B onto CA and from C onto AB 

(2) {y’Y, AC} = {Z’Z, AB}. 

By means of a real projection, project DEF into the line at infinity of an 

Fic. 2 

extended Euclidean plane to obtain Figure 2. Equations (1) and (2) give in 

Figure 2 the relationships 

XC Y’A Z'B 

XBYC ZA 

V’A-YC 2Z’A-ZB Y’A YA ZB 
= or 

Y’C-YA Z'B-ZA rU FA YC ZA 

Hence we deduce Ceva’s theorem in Figure 2 

XC YA ZB 

XB YC ZA 

where the point of concurrency, P, is any finite point in the plane not on a side 

of the triangle. 

The proof is still valid if, in Figure 1, DEF passes through Y but not through 

Y 

/ 
B x Cc 
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Z or if through Y and Z. The resulting formulas in Figure 2, XC-ZB/XB-ZA 
=—1 and XC/XB=-—1, merely express a relationship deducible directly from 

ratios formed by parallels and the bisection by a diagonal of a diagonal of a 

parallelogram respectively. If, relaxing an initial restriction, P lies on DEF the 

proof requires only a simple modification. The points Q, Y’, Z’ then coincide 
with P, Y, Z respectively in Figure 1. Equation (2) is then non-existent. Equa- 

tion (1) is still valid and after the projection to Figure 2 leads at once to 

XC: YA-ZB/XB:-YC:ZA=-—1. P is then a point at infinity in Figure 2 and 

the formula can also be obtained from the ratios of parallels. In all of these three 

cases the usual proof of Ceva’s theorem implies infinite areas and is not valid. 

Returning to Figure 1, the concurrency of the lines AX, BY’, CZ’ in Q leads 

to the Ceva relation 

XB Y'A Z'B 

The expanded form of equation (1) is 

XC-DB V'A-EC 2Z'B-FA 

XB-DC Z'A-FB 

Combining the two expressions we have at once Menelaus’ theorem g 

(We note here that if Ceva’s theorem only is required, the restriction that DEF 

is a finite line is not needed. Also the restriction that P shall not lie on DEF is 

only required for procedure to Menelaus’ theorem.) 

We now discuss the question of unreal elements. Following the development 
given by Coolidge in his treatise The Geometry of the Complex Domain, unreal 

elements are fundamentally in the projective field. Some care however is needed 

for the relationships between points lying on an isotropic line. Isotropic lines 

are so called from their property that their behavior is the same with respect to 

all rectangular axes through their real point (Greek ioos equal, rpézos direction 
or course. Compare the use of the word also in Physics and Biology). In the 

following discussion we shall slightly vary from Coolidge’s notation. 

Consider points on the line y = Rix where the axes and R are real. We denote 

the points by the symbols 1, 2, 3, etc. and their x coordinates by x,+.x/ 

(r=1, 2, 3 etc.) where x,, x/ are real. The distance function for points 1, 2 is 

then = V1 — R?{ (x2 — x)? — (xd — xf)? + (xe — — x{)}, or 

VI—R?*{ (xe+exd ) Hence if R#+1, the ratio between the dis- 

tance functions id and 3d, is independent of R. Varying R is effectively project- 

ing the points from one line to other lines with vertex the point at infinity on the 

y-axis. This projection not only gives the usual invariant projective properties 

=—1. 

| | 

DB EC FA 1 
— X X — = 1. 
DC FB 

4 
4 
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among a range of points but also the invariance of the ratio between any two 

corresponding distance functions. For the isotropic lines through the origin 

R= +1 and the distance function is always zero. If we accept the viewpoint 

that the invariances persist in these limiting cases, the restriction as to the 

reality of the elements of the configuration in the real plane can be completely 

relaxed. 

A two-way linkage can also be obtained as follows, but the configuration does 

not contain an independent projective proof of either theorem. With the tri- 

angle ABC and concurrent lines APX, BP Y, CPZ as before, let YZ meet BC 

in U, ZX meet CA in Vand XY meet AB in W. Since the triangles ABC, X YZ 

are in perspective they are also coaxal and hence U, V, W are in a straight line. 

From the quadrangle A YPZ the cross-ratio {X U, CB} = —1, and similarly for 
{YV, AC}, {ZW, BA}. Multiplying these together and rearranging in ex- 
panded form 

XC YA ZB UC VA WB 

XB YC ZA UB VC WA 

and the truth of Menelaus’ theorem for the line UVW implies that of Ceva’s 

theorem for any point P not on a side of the triangle. Similarly, using the dual 

(reciprocal) figure and proof, the truth of Ceva’s theorem leads to that of 

Menelaus for any line not through a vertex of the triangle. 

GRAPHICAL SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS* 

J. P. BALLANTINE, University of Washington 

1. Introduction. Lately, graphical solutions have appeared for the linear 

differential equation 

(1) y’ + P(x)-y = Q(x). 

The following procedure has certain practical and theoretical advantages 

over those that have appeared. 

2. The method. First write the equation in the form 

(2) y’ = (B(x) — y)/(A(x) — 2), 

where A(x) =x+1/P(x), B(x) =Q(x)/P(x). 

It is easily seen from equation (2) that y’ is the slope of the straight line 

through the two points (A(x), B(x)) and (x, y). This fact makes use of the 

“parallel ruler” unnecessary. 

Set up a coordinate system showing the initial point, P=(xo, yo), through 

which the solution must pass. Rule off a number of strips, parallel to the y-axis, 

* Presented to a meeting of the mathematicians of the Northwest, Vancouver, B. C., April 2, 
1939. 

7 M. E. Levenson, On a graphical solution, this MONTHLY, vol. 63, 1956, pp. 115-116. 
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and of width w. Let the initial strip, the one numbered 0, have its center along 

the line x =x». The center of the jth strip will be the line x =x; =x9+jw. To save 

ruling lines, use a graph paper on which the scale is so chosen that the necessary 

rulings are already on the paper. 

To each strip will belong a point, (A, B). The point belonging to the jth 

strip is (A;, B;), where A; =A(x;) and B;=B(x;). Let y=f(x) be any solution of 

differential equation (1). Then the tangent to y=f(x) drawn at the center of 
any strip passes through the point belonging to that strip. It is helpful to num- 

ber the strips and the corresponding points. 

3. The solution. When the strips and corresponding points have been laid 

off, the solution for any given initial conditions, x =xo, y =o, is immediate. For 

simplicity, let Po = (xo, yo) be at the center of strip 0. Start with your ruler pass- 

ing through P» and (Ao, Bo). Guided by the ruler, draw the straight line through 

P, to the nearer edge of Strip 1. Taking care not to remove the pencil from the 

paper, turn the ruler so that it still rests against the pencil, but now passes 

through (A;, B,). Now extend the line you have started, completely across 

Strip 1. Similarly, as you cross Strip 2, the ruler is in line with the point (Ae, By.) 

belonging to that strip. 
It takes only a few seconds to extend the “solution” across each strip, so 

that the entire solution is very quickly found, even if the strips are narrow and 

numerous. 

1.685 
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4. Example. y’+(1+0.3x)—y=1. 
Solution. First put the differential equation in the form (2), 

y = ((1 + 0.3%) — y)/((1 + 1.3) — 2). 

Thus, A(x) =1+1.3x and B(x) =1+0.3x. 

The diagram shows Strips 1, 2, 3, 4, each of width 0.2, the last half of Strip 0 

and the first half of Strip 5. This will take the solution up to x =1. 
The values of A(x) and B(x) are then tabulated: 

n 0 1 2 3 4 5 

x 0.0 0.2 0.4 0.6 0.8 1.0 

A(x) 1.00 1.26 1.52 1.78 2.04 2.30 

B(x) 1.00 1.06 1.12 1.18 1.24 1.30 

The points (A;, B;) are then plotted and numbered. 
The diagram shows how the solution, really a broken line, starts at (0, 1.685), 

with each link in line with the corresponding point (A;, B;). It ends at about 

(1, 1.38). 
The theoretical solution is slightly complicated, 

y = (10/13)(1 + 0.32) + 0.91577(1 + 0.3x)-19/8, 

and for x=1, y=1.3819. 

I have found this method very useful, not only for solving linear differential 

equations, but also for plotting such curves as y= Ke’ and y=Cx* for given 

values of K, r, C, and n. Here y = Ke’ is a solution of y’ =ry = (0—y)/((x—1/r) 

—x), and y=Cx" is a solution of y’=ny/x=(0—y)/((1—1/n)x—<x). In each 
case, B(x) =0 and A(x) is a simple expression. 

THE NAMES OF THE CURVE OF AGNESI* 

T. F. Mutcrong, S.J., Loyola University, New Orleans 

As Vacca first noted [1] it is to the Camaldolese monk, Guido Grandi, that 
we owe the naming of the locus x*y = a?(a—y) which is associated with the name 
of Maria Gaetana Agnesi (1718-1799). Grandi, in his book ([2], p. 15), gave 
the name Scala, the scale curve, to this locus because it can serve as a measure 

of light intensity, and in the same work (p. 5, Propositio III) he wrote, “Given 

a semicircle of diameter JK,--- the tangent KG,--- (and) JG intersecting 

* Presented to the Louisiana-Mississippi Section of the Mathematical Association of America, 
February 17, 1956. 
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the periphery at H. This determines the sine HL. Let (GK)? be to (KJ)? as the 

diameter is to YN, and this to 1N. In this way is had the infinity of terms 

2N, 3N, 4N, etc. I affirm that the sum of all the differences of these terms taken 

= 

4 

_D / 

G 

alternately Y1, 23,45, etc. equals the versed sine JZ of the intercepted arc JH.” 

Taking ZICH =¢, KI=a, KG=x, with GD=LI=y ([2], p. 7, Propositio IV), 

this means YN=a*/x?, 1N=a5/x*,---; and JL 

=a*/(x*+a2) 
(1) = (a/2)(1 — cos ¢) = (a/2) vers ¢. 

(If a=2 we have the unit circle representation of vers ¢.) 

In 1718, Grandi returns to this curve, now as a “scale of velocities . . . that 

curve which I describe in my book of quadratures, proposition 4, derived from 

the versed sine, which I am wont to call the Versiera but in Latin (is) Versoria.” 

[3]. In (1) Grandi had sufficient justification for this terminology. I find no 

evidence that he was motivated by the fact that in literary Latin versoria de- 

notes “a rope that guides a sail,” and simus may mean “the bend or belly of a 

sail swollen by the wind.” 

The work of Grandi (and earlier mention by Fermat, and later by Newton) 

did not attract much interest to the curve. It came to the notice of mathe- 

maticians principally through the influential Imstituzioni analitiche (1748) of 

Agnesi, the first volume of which was translated into French in 1775. A complete 

English translation was made by J. Colson of Cambridge in 1801. It is due to 

al important work of Agnesi that her name became associated with the curve 
4}. 

What is the origin of the name “Witch of Agnesi”? The substantive versiera 

\ 

\ 
\ 

\ 
\ 

/ 
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is a synonym for the substantive adjective versoria, “turning in every direc- 

tion,” a word derived from the Latin vertere, “to turn.” In the course of time 

versiera took on another meaning in this way. The Latin words adversaria, and 

by aphaeresis, versaria, signify a female who is contrary, an adversary; and in 

Ecclesiastical Latin one of the added meanings was a female who is contrary 

to God. Thus, even in the literary Latin of the Middle Ages, the word versiera 

came to be applied, although comparatively rarely, to the one par excellence who 

is contrary to God, that is, the devil: “a female fiend or goblin,” “the devil’s 

grandmother,” and other related meanings, the equivalent of the English word 

witch. 

Although Colson was presumably the first to use the word witch in connec- 

tion with this curve, it should not be supposed that the sinister implication con- 

sequent on the use of this word is to be attributed to a mistaken or facetious 

translation. In his Analytical Institutions of Agnesi (1801, vol. 1, p. 222) we read: 

“...the curve to be described, which is vulgarly called the Witch.” This 

translation departs from the original which has: “ . . . which is called Versiera” 
[5]. Thus it appears that as early as 1801 the technical meaning of Versiera, 

intended by Grandi and Agnesi, had a competitor in Italy among mathemati- 

cians in the nontechnical, ecclesiastical connotation of the term. 

When we advert to the sinister implication of the word witch, especially 

when associated with the name of a particular woman, its inappropriateness, 

even as a mathematical term, is apparent. Far from honoring Agnesi, the 
ominous term would seem rather to discredit the life and work of a most remark- 

able and honorable woman—a truly remarkable linguist, mathematical author, 

correspondent and translator of scholars, serious student of philosophy and 
theology, and zealous hospital nun. 

It is suggested that American and English mathematicians, in their desire 

to honor the memory of Agnesi, abandon the use of the term “Witch of 

Agnesi,” adopting instead the practice of the French (courbe d’Agnesi) and the 

Germans (Agnesische Kurve), writing simply “the curve of Agnesi.” 

The author gratefully acknowledges the generous assistance of the referee 

and of the Rev. J. F. Moore, S.J. 
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ON DEGENERATE CONICS 

J. W. Lastey, Jr., University of North Carolina 

Introduction. One learns in elementary analytic geometry that the real conic 

(1) ax* + 2hxy + by? + 2gx+ 2fy+c=0 

is elliptic, hyperbolic, parabolic, according to whether the discriminant D 
=ab—h? of the quadratic terms is positive, negative, or zero. 

One learns further that the conic is composite (degenerate) if, and only if, 

the discriminant of the conic 

> ll 

8 

h g 

b f 

is, or is not, zero. 

Metric transformations. It is pointed out that all conics except the proper 

parabola have at least one center, and that by translation to a center the second 

degree terms are preserved and the linear terms are deleted. By following this 

translation by a suitable rotation, one may then remove the product term. Every 

conic, except the proper parabola, may in this manner be reduced to the simple 
(canonical) form 

(2) ax? + by?+c=0 

of a modified sum of squares. 
Projective transformations. In projective geometry it is pointed out that by 

the mere device of choosing a self-polar triangle as the triangle of reference, all 

conics, including the proper parabola, are capable of being transformed into 

form (2) in this way. 

An orthogonal transformation. The transformation employed in the projec- 

tive case is not usually orthogonal. This paper purports to review the case for 
the degenerate conics, and to show that an orthogonal transformation can be 
devised to reduce the degenerate conic to form (2) by a single transformation, 

which will provide a little used criterion for the determination of the sort of de- 

generate conic it is. 

Let us ask whether we can find a transformation 

x 

(3) y 

z= yx! + voy’ + 092’, 

diz! + doy’ + Aas’, 

+ boy’ + 32’, 

where the conditions 

4 

4 
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arn + hu + gv = ky, 

(4) hh + bu + fv = kp, 

+ fu + cv = by, 

hold for each set (Aj, wi, vi), (¢=1, 2, 3) and an appropriate k;=1, 2, 3, one for 
each set. 

In order to address ourselves to this question, let us consider the conic in 
the homogeneous form 

(5) F = ax? + 2hxy + by? + 2gxz + 2fyz + cz? = 0 

and solve the characteristic equation 

a—k h g 

(6) h b—k f =0 

g f c—k 

for k=k, ke, ks. These values k satisfy (6) and make (4) consistent. The solutions 

(Ai, Ms, ¥s) from (4), one set for each k;, may or may not make (3) orthogonal. If 

they do not, they can be made to do so by dividing each set by the square 

root of the sum of the squares of the three numbers in the set, and taking the 

numbers so obtained for the coefficients in (3). 

Invariants. Under transformation (3), now orthogonal, F is an invariant 

(covariant). So also is G=x?+y?+2?. The linear combination F—&G is a further 

covariant, which because there is no trace of (3) in k, makes the coefficients of the 

characteristic equation 

(7) B— A-k-A=0 

invariant also. We thus have 

(8) AHA 

But the transformation (3) applied to (5) reduces it to 

(9) a’ x’? + b’y’? + c's’? = 0 

where a’, b’, c’ are the solutions k of (7). This applied to (8) gives 

(10) A=a'd'e’. 

Degenerate conics. If our conic is degenerate, A=0. If c’=0, then }°A 
=a'b’ and (9) becomes 

(11) a’x’? + b’y’? = 0 

where a’ and 0’ are solutions of 

(12) DA=0. 

- 
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It follows at once that if }°A is positive, a’ and b’ have the same sign and the 
lines given by (11) are conjugate complex. If >~A is negative, the lines given by 

(11) are real and distinct; if }\A is zero, the lines are real and coincident. 
Now because of the symmetry present in (5), (8), and (9), the case b’=0 

(or a’ =0) is not essentially different from the foregoing case in which c’ =0. For 

example, if b’=0, >°>A =a’c’, equation (11) becomes a’x’?+c’z'*=0. The con- 
clusions stated at the end of the preceding paragraph still hold; only this time 

in metric cases we have conjugate complex parallel lines, coincident ideal lines, 

and real and distinct parallel lines as new features—geometric loci hardly obtain- 

able as conic sections, but certainly possible graphs of equation (5), if not of 

equation (1). Thus, for the conventional conics we take c’ =0. In this case there 

is no distinction between D and }-A, since both are a’b’. Symmetrically, if 

b’=0, is the same as B; if a’=0, is the same as A. In all cases, 
plays the role of the discriminant of a quadratic form in two variables. In all 

cases, the conclusions reached above obtain: If >A is positive, the lines are con- 

jugate complex; if negative, the lines are real and distinct; if zero, the lines are 

coincident. This with the understanding that equations of the form px+qy+rz 
=0 represent a straight line, provided », g, r are constants and (p, gq, r) 

~(0, 0, 0). 
Summary. Thus we see that for the determination of the type of degenerate 

conics we have three criteria. The discriminant of the quadratic form D =ab —h? 

for telling the conics from which the degenerate conics degenerate. If D is posi- 
tive, we have elliptic lines; for example, x?+y?=0. If D is negative, we have 
hyperbolic lines; for example, xy=0. If D is z2ro we have parabolic lines; for 

example, x?=0, x?—1=0, x?+1=0. 

The rank r of the conic tells us whether the lines are distinct (rank 2) or 

coincident (rank 1); for example, xy =0, x?+y?=0, x?—1=0, x?+1=0 are dis- 

tinct lines. No considerations of reality are made here. If r=1, the lines are 

coincident; for example, x?=0. 

In the case of the criterion }\A, the trace of the adjoint matrix of the conic: 
if >°A is positive, we have a pair of complex lines; for example, x?+y?=0, 

x?+1=0. If >0A is negative we have a pair of real and distinct lines; for exam- 

ple, xy=0, x?—1=0. If )CA is zero, we have a repeated real line; for example, 
x?=0. 

The trace criterion thus distinguishes conjugate complex lines, for which 

>A is positive, from real and distinct lines, for which }°A is negative. It 
distinguishes distinct lines, for which }\A 0, from repeated lines, for which 

>°A=0. Moreover, it distinguishes conic sections—those which may be ac- 

tually cut from the cone; for example, xy =0, x?+y?=0, x?=0, from the graphs 

of the equation of the second degree—to which must be added degenerate 
conics such as x?—1=0, x?+1=0, not obtainable by cutting a cone. 

i H 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Epitep By Howarp Eves, University of Maine 

Send all communications concerning Elementary Problems and Solutions to Howard 
Eves, Mathematics Department, University of Maine, Orono, Maine. This department wel- 

comes problems believed to be new, and demanding no tools beyond those ordinarily furnished 
in the first two years of college mathematics. To facilitate their consideration, solutions should 
be submitted on separate, signed sheets, within three months after publication of problems. 

PROBLEMS FOR SOLUTION 

E 1266. Proposed by D. C. B. Marsh, Colorado School of Mines 

Solve 

— b* — c* = 3abe, a? = 2(b + c) 

simultaneously in positive integers. 

E 1267. Proposed by Ivan Niven, University of Oregon 

The divergence of the harmonic series }-1/n is often established by com- 

parison with the obviously divergent series }-f(n) where f() =2-*, the integer 

k being defined by the inequality 2*2”>2*-'. Establish the convergence or 

divergence of the series ya /n—f(n)). 

E 1268. Proposed by A. J. Goldman and P. S. Wolfe, Princeton University 

Evaluate the determinant D, which has (1, 2,---, m) as first row, 

(2,3, m, 1) as second row, etc. 

E 1269. Proposed by Frank Kocher, Pennsylvania State University 

Prove that the area under one arch of the curve generated by a vertex of a 
regular polygon rolling on a straight line is equal to the area of the polygon plus 

twice the area of its circumscribed circle. 

E 1270. Proposed by Leo Moser, University of Alberta 

What is the smallest positive even integer m such that in both m and »+1 
dimensions the regular simplex of edge 1 will have a rational number as its con- 
tent. (Dedicated to Professor H. S. M. Coxeter.) 

SOLUTIONS 

A Linear Diophantine Equation 

E 1236 [1956, 664]. Proposed by Hazel E. Evans, University of Pittsburgh 

For a>b and N<ab find the maximum value of N for which the equation 

ax+by=WN 

has a solution in non-negative integers. 
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Solution by E. D. Schell, Remington Rand Univac, New York. We assume that 
it is intended that a and b represent positive integers. Now suppose K = max N 

subject to the stated conditions. Then ax+by=K, and (a, b) divides K. But the 

largest N <ab for which this could be true is ab —(a, b). 

Set —(a, b) =aa—Bb, where a<b, B<a, and a, B>0, by using the Euclidean 

algorithm. Add ab to each side, obtaining ab—(a, b) =aa+(a—8)b. Then x=a 

and y=a-— 8 are non-negative solutions for K. 

Also solved by D. A. Breault, J. C. W. De la Bere, Underwood Dudley, A. R. Hyde, Sidney 

Kravitz, D. C. B. Marsh, J. B. Muskat, E. N. Nilson, W. L. Ostrowski, Azriel Rosenfeld, D. J. 
Schaefer, and the proposer. Late solutions by J. W. Harter, J. H. Hodges, and R. H. Hou. 

Editorial Note. If a and b are taken to represent amy integers, then the following facts can be 

established: (1) if a>b=0, there is no solution; (2) if a>0>b, then K =ab—(a, b); (3) if O=a>b, 

then K (4) if then K=0. 

A Pair of Line Integrals 

E 1237 [1956, 664]. Proposed by Viktors Linis, University of Ottawa 

Let E be an ellipse, 7; and r2 focal radii, a the angle between the focal radii, 

and ds the element of arc. Evaluate the integrals 

f ds/(rir2)'/? and f (cos a/2)ds. 
E E 

Solution by Chih-yi Wang, University of Minnesota. Let the parametric repre- 
sentation of E be x=a cos 0, y=b sin 8, a>b>0, Then we have 

ds = [a® — (a? — b?) cos? 

a — (a? — b*)1/? cos 8, 

a+ (a? — b?)!/2 cos 6, T2 

whence 

= d@ = 2r. 
E 

For the second integral, we make use of the cosine law and the half angle 

formula to obtain 

cos a/2 = b/[a? — (a? — b?) cos 9]/2, 

whence 

f (cos a/2)ds = bdé = 2xb. 
E 0 

aA weet RD * 
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Also solved by J. C. W. De la Bere, David Freedman, A. R. Hyde, J. B. Johnston, M. S. 

Klamkin, C. S. Ogilvy, C. D. Olds, L. A. Ringenberg, Jeff Ritterman, Azriel Rosenfeld, Nathan 
Shklov, A. V. Sylwester, David Zeitlin, and the proposer. 

Three Consecutive Powers of 3 

E 1238 [1956, 665]. Proposed by M. S. Klamkin, Polytechnic Institute of 
Brooklyn 

Determine integral values of m>0 such that 3", 3"+!, 3"+? all have the same 

number of digits in their denary expansions. 

Solution by Joe Lipman, University of Toronto. If n is an integer such that 

3", 3"+1, 3+? all have the same number of digits in their denary expansions, then 

10000--- <3" < 11111---. 

k digits k digits 

Now the mantissa of log 11111 --- is 0.0457574---. If the inequality is 
satisfied, m log 3=an integer+-a decimal fraction between zero and 0.0457574. 

But log 3 =0.477121256, which is just slightly greater than 1/21. Therefore we 

can expect the m’s to recur at intervals of 21 or 23. Thus we have 

n n log 3 

21 10.019546376 

42 20 .039092152 

65 30 .01288163 

86 41 .03242802 

109 52.00621 --- 

130 62.02575 - - - 

151 72.04529 -- - 

174 83 .0190985 

A comparison of 174 and 21 shows that the corresponding mantissae differ by only 
0.0004478. This is because 153 log 3 = 72.9995522. Thus any number of the form 

21+153k, where k <19546376/4478 = 43.8 - - - will be one of the required n’s. 

For k= 44, the resulting mantissa is 0.9998432. Subtracting 0.9542425 =2 log 3, 

we get the mantissa 0.0456007. So instead of 21+153(44), use 21+153(44) —2 

= 6751. Now using the sequence 6751+153k, where ki <456007/4478, repeat 

the above process to get more n’s. Then derive the new sequence 22355+153k:, 

and so on. In this way arbitrarily large m’s can be determined as long as tables 

of sufficient accuracy are available. 

Also solved by J. C. W. De la Bere, Monte Dernham, Hazel E. Evans, Michael Goldberg, 
A. R. Hyde, I. M. Isaacs, Sidney Kravitz, D. C. B. Marsh, Herbert Nadler, C. S. Ogilvy, D. S. 

Passman, L. A. Ringenberg, Azriel Rosenfeld, E. D. Schell, G. W. Walker, and the proposer. 
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Two Related Quadrangles 

E 1239 [1956, 665]. Proposed by Josef Langr, Prague, Czechoslovakia 

Let Q’=A’B’C’D’ be the quadrangle formed by the orthocenters A’, B’, 
Cc’, D’ of triangles BCD, CDA, DAB, ABC of a given convex quadrangle 
Q=ABCD. Show that: (1) the vertices of Q and Q’ lie on a common equilateral 

hyperbola, (2) Q and Q’ have equal areas. 

Solution by D. C. B. Marsh, Colorado School of Mines. The vertices of Q deter- 

mine an equilateral hyperbola, which may be taken as xy=1 by superimposing 

a properly scaled coordinate system upon it. We label! coordinates as A: (a, 1/a), 

B: (b, 1/b), C: (c, 1/c), D: (d, 1/d). It is a simple matter to find the orthocenters 

A’: (—1/bced, —bcd), B’: (—1/acd, —acd), C’: (—1/abd, —abd), D’: (—1/abc, 

—abc), which are obviously co-hyperbolic with A, B, C, D, and (1) is estab- 

lished. 
Assuming A, B, C, D are the vertices of Q in order, the area of Q is given 

by the sum of the absolute values of 

a ifa 1 life 1 

(1/2)} 6 1/6 1] and (1/2)|}d 1/d 1 

c 1i/e 1 a ifa 1 

Multiplying the first columns of both determinants by —1/abcd and the second 

columns by —abcd does not change the numerical value, but the form becomes 

that of the area of Q’, demonstrating (2). 

Also solved by K. W. Crain, J.C. W. De la Bere, C. S. Ogilvy, O. J. Ramler, Sister M. Stephanie, 

and the proposer. 

Editorial Note. The vertices of a convex quadrangle determine a nondegenerate equilateral 

hyperbola unless the line through one pair of vertices is perpendicular to the line through the other 

pair. This exceptional case is easily treated either on its own merits or as a limiting situation of the 
general case treated above. 

Two Six-piece Dissections 

E 1240 [1956, 665]. Proposed by H. Lindgren, Patent Office, Canberra, Aus- 
tralia 

Find six-piece dissections of a regular dodecagon into a square and into a 
Greek cross. 

Solution by the proposer. It is readily verified that a chord subtending four 

sides of a regular dodecagon is equal to a side of the equivalent square. There 

are numerous six-piece dissections based on this fact. Those shown in Figures 

. 
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1 and 2 are perhaps the neatest. 

Fic. 1 Fic. 2 

These dissections were found by a general method described in The Austral- 

ian Mathematics Teacher, vol. 7, 1951, pp. 7-10, vol. 9, 1953, pp. 17-21, 64. 

ADVANCED PROBLEMS AND SOLUTIONS 

Epitep By E. P. Starke, Rutgers University 

Send all communications concerning Advanced Problems and Solutions to E. P. Starke, 
Rutgers University, New Brunswick, New Jersey. All manuscripts should be typewritten 

with double spacing and margins at least one inch wide. Problems containing results believed 
to be new or extensions of old results are especially sought. Proposers of problems should also 
enclose any solutions or information that will assist the editor. In general, problems in well 

known textbooks or results in readily accessible sources should not be proposed for this depart- 

ment, 

PROBLEMS FOR SOLUTION 

4738. Proposed by R. R. Goldberg, Pittsburgh, Pa. 

If, for all positive x, > | F(x) | <a and F(kx)=0, then F(x) 

vanishes identically. 

4739. Proposed by V. L. Klee, Jr., University of Washington 

Suppose C is a closed convex subset of the Euclidean space E* whose bound- 

ary is a regular octahedron, and that Ci, C2, and C; are translates of C (i.e., 
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for some x;€ E*). Then, if each of the intersections Ci(\C2, C2/\C;, 

and C;(\C, is non-empty, must C;(\C;(\C; be non-empty? 

4740. Proposed by R. J. Dickson, Lockheed Aircraft Corporation, Burbank, 

California 

Is every locally schlicht analytic mapping of the complex plane onto itself 

a schlicht mapping? 

4741. Proposed by L. A. Rubel, Institute for Advanced Study 

Prove or disprove the statement: If a metric space S is homeomorphic to its 

completion, then S is complete. 

4742. Proposed by Joshua Barlaz, Rutgers University 

Evaluate the Cesaro first order mean for the series }+,22 (—1)* log n. 

SOLUTIONS 

Functions Restrained by an Integral Inequality 

4660 [1955, 659]. Proposed by E. M. Wright, University of Aberdeen, Scot- 

land 

For all x21, f(x) and ¢(x) are non-negative functions, bounded and integra- 

ble in any finite interval. They satisfy the inequality 

(i) If [°(t)t-*dt = ©, find an f(x) such that f(x) > asx. 
(ii) If @(x)/x-0 and [°(t)t-*dt < ©, show that 

1 z 

soa 

tends to a limit as x and that lim g(x) =lim sup f(x). 

(iii) Show that, whatever restriction we may impose on the order of $(x) as 

x—> ©, we cannot thereby ensure that f(x) tends to a limit. 

Solution by R. O. Davies, University College, Leicester, England. Let (E) de- 
note the inequality. 

(i) If f(x) =6(x)x!+fid(Ht-*dt, then f(x), and integration by parts 

shows that (Z) holds with equality. 
(ii) Integration by parts shows that 

g(x) = f x? dx. 
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Hence, for x1<x2, using (Z) multiplied through by x~?, we have 

(1) g(x2) — g(x) = [ — x? | dx s 
1 | 71 

Consequently, g(x) is bounded above (as well as below, by zero). It now follows 

that g(x) tends to a limit. For otherwise by choosing a large value of x; for which 

g(x) was near its lower limit and a larger value of x2 for which g(x2) was near its 

upper limit we could obtain from (1) a contradiction to the convergence of 

That lim g(x) Slim sup f(x) is a standard result, and the reverse inequality 

follows from (£), since ¢(x)x—!-0. 

(iii) Let f(x) =x-!+1. For all large x we have 

= 1+ soa, 

and so (E£) will be satisfied with a ¢(x) which is zero for all large x. Without 

violating (E) we may now destroy the convergence of f(x) by changing its value 

to zero for (say) all large integer values of x; or, if we wish, throughout small 

intervals surrounding them, since there is strict inequality in (EZ). 

Also solved by R. P. Boas, Jr., and the proposer. 

Zeros in a Triple Diagonal Matrix 

4681 [1956, 191]. Proposed by Jack Klugerman, Evans Signal Laboratory, 

Belmar, N. J. 

Given a real symmetric matrix A which is triple diagonal, i.e., it has a di- 
agonal, an upper diagonal, a lower diagonal, and the remaining elements are 

zero; if c is the eigenvalue with highest multiplicity m, then there must be at 
least m—1 zeros in the upper diagonal. 

Solution by N. J. Fine, University of Pennsylvania. Since A is real symmetric, 

its eigenvalues span R”, so the subspace V corresponding to c has dimension m. 

We can find a basis 1, - - - , %m for V such that (2;, e.) =0 for k Ski, (v5, £0, 

where the e are unit vectors and 1Sk:<k3< --~- <Rm. We then have, for 
m, 

0= c(;, = (An,, (0, Aex,) 

Thus the m—1 upper diagonal elements ax,,4,41 are zero. (For a discussion of the 

concepts used here see, e.g., MacDuffee, Vectors and Matrices.) 

Also solved by Harley Flanders, Wallace Givens, W. V. Parker, and the proposer. 

i ‘ 
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Non-rectifiable Simple Closed Curve 

4687 [1956, 259]. Proposed by John Wermer, Brown University 

Let T be a simple closed curve in the complex plane containing the origin in 

its interior. Show that if I’ is not rectifiable, then we can approximate the con- 

stant 1 uniformly on T by functions > a Cn2", Co=0. 

Solution by the proposer. Let @ map | | <1 conformally on the interior of T 

with @(0) =0. Suppose we cannot approximate the constant 1 in the indicated 

fashion. Then we cannot approximate 1 uniformly on the unit circle by functions 

p Theo y CxO"(A), Co=O0. By a classical theorem of F. Riesz, there then exists a 

measure on the unit circle with =0, =1. The 
measure $(A)du(A) is then orthogonal to all functions P(¢(A)) where P is a poly- 

nomial. Since ¢ is schlicht, functions P(@(A)) approximate uniformly on |r| =] 

to each function f which is continuous in |\| $1 and analytic in |\| <1. Hence 
(A)du(A) is orthogonal to all such functions. By another theorem of F. (and M.) 

Riesz, this implies that (A)du(A) =h(A)dA, where h(A) is the boundary value of 

a function h(z) analytic in | z| <1 and with fig h(re®) | d0 bounded as r—1. 

On the other hand, if ¢’ is the derivative of ¢, then 

and 

1 

for each r<1. Now also 

f o"(A)A(A)dA = 0, n ¥ —1, f (A) dA = 1. 

Hence for all 

1 

2ri 

But the functions {o(a) }2. are uniformly dense on |r| =r by a theorem of 

Walsh. Hence (A) =¢’(A)/277 on |r| =r. This is true for each r<1. Hence 

1 Qe 

| ¢’(re**) | = f | h(re*®) | 
2r Jo 0 

is bounded as r—1. Let I, denote the image under ¢ of |\| =r. Then the lengths 
of the I’, are uniformly bounded as r—1 by the preceding and, also, I’, converges 

to I' as r—1. Hence TI is of finite length. Hence, if T is not rectifiable, the ap- 

proximation must be possible. 

19 
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Sums of Distinct Divisors 

4688 [1956, 346]. Proposed by A. H. Clifford, Tulane University 

What positive integers have the property that every positive integer less 

than n is expressible as the sum of distinct divisors of ? 

I. Solution by Virginia S. Hanly, Ohio State University. Let the prime factor- 
ization of n ben p? - Pi<pe< +--+ <p,. In order that every positive 

integer less than be expressible as a sum of distinct positive divisors of m, it is 

necessary and sufficient that p:=2, pis: - - - pf’) fora@=1, 2,---, 

r—1, where o(k) denotes the sum of all positive divisors of k. The necessity is 

obvious.The proof of sufficiency is by induction on r, observing first that if 5 

and ¢ are positive integers, c2b—1, then the variable x9+x,b+ - - - +x,b*, 

0<x;Sc, assumes each of the values 0, 1, - - - , c(b*+!—1)/(6—1). Now let the 

proposed set of conditions be valid for g,-=pi'p3 - - - py. We assert that every 

positive integer not greater than o(q,) is expressible as a sum of distinct divisors 

of gr. The assertion is clearly true for r=1. Any number x9+%1);+ - + + +%Xa,p7’, 

where each x; is a sum of distinct divisors of g,-1, is a sum of distinct divisors of 

gr. Thus, if our assertion is true for r—1 it is true for r. 
II. Note by Bernard Jacobson, Michigan State University. If positive divisors 

only are to be used, then the complete solution is given by B. M. Stewart (Sums 

of distinct divisors, Amer. J. Math. vol. 76, 1954, pp. 779-785, Corollary 1). 

If it is permitted to use also negative divisors, then a similar analysis will show 

that the numbers m have the prime factorization 

k 

i=1 

subject to the conditions p;—1 S20(2°3*), p;$20(2°3¢ | pi) for j7=2,---,k, 
and } and ¢ are not both zero. (This result was communicated to the American 

Mathematical Society, 1956. See Abstract 407, Bull. Amer. Math. Soc. vol. 62, 

1956, p. 351.) 

Also solved by A. S. Davis, J. P. Mayberry, D. C. B. Morse, P. P. Saworotnow, and the 

proposer. 

Limit of a Class of Sums 

4689 [1956, 346]. Proposed by D. J. Newman, AVCO Research Division, 
Lawrence, Mass. 

Let f(x) be any function such that f’’(x)20, f(m)~f(n+1). Prove that 

(—1)"/™ tends to } as t1-. 

Indications by the proposer. Assuming f(0) =0 and f’(0), f’’(0) 20, the prob- 

lem is equivalent to showing that 

- 

| 

n 

> 

L 
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lim — 4 —...} =0, 

The last expression (the series being absolutely convergent for | ¢| <1) may be 

written in the form 

n=0 

where A?F(n) = F(2n) —2F(2n+1)+F(2n+2). From the mean value theorem 

we have A?F(n) = F(2n+6,), 050,52. Therefore 

1 1 
> log? Dd [f'(2n + 2) + log > 2") + 2), 

n=0 

and the last two sums approach zero as t—1-. 

Two Tetrahedrons and an Invariant 

4690 [1956, 346]. Proposed by Victor Thébault, Tennie, Sarthe, France 

Having given a tetrahedron ABCD and the tetrahedron A,B,C,D, obtained 

by passing planes through A, B, C, D parallel to the opposite faces of ABCD, 
show that 

PA’ + PB’ + PC’ —2PD — PD, 

is a constant independent of the position of point P. Extend this property to a 
skew polygon of m vertices. 

Solution by N. A. Court, University of Oklahoma. Considering the general case 

first, let A; (¢=1, - - - ,m) be m given points in space having G for their centroid, 
and let k denote the sum of the squares of the m(n—1)/2 segments determined 
by the z given points. If P is any point in space, we have: 

(1) > PA; = GA; + [1; p. 316, art. 274], 
t=1 t=] 

(2) k=n >GA; [1; p. 321, art. 280], 
t=1 

whence 

(3) > PA; = nPG + k/n. 
t=1 

If E is a point on the line GA,, and EG:GA,=t, both in magnitude and in 

1 

s 

] 
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sign, we have, by Stewart’s theorem [2]: 

(4) PE’ -GA, + PG -A,E + PAn-EG +GAy:AnE-EG = 0. 

Now EG=1GA,, and A,E=—(t+1)GA,, hence (4) becomes, after division by 

GAn, 

(5) PE’ — (t+1)PG + tPA, — t(t + 1)GA, = 0. 

Eliminating PG? between (3) and (5), the result may be put in the form 

(6) PA; — n(PE’ + tPA,)/(t + 1) = k/n — niGA,. 
t=1 

The right hand side of (6) is a constant, independent of the position of P, and 

this constant is the value of the left hand side, which proves the proposition in 

the general case. Observe that this proposition is valid in Euclidean space of 

any number of dimensions. 

In the case of the tetrahedron (J) = ABCD, the vertex D, of the anticomple- 

mentary tetrahedron (7;) = A1B:C,D, of (T) lies on the line GD, where G is the 

centroid of (JT), and DiG=3GD [3: p. 53, art. 176]. Thus the vertex D; may in 
the present case play the role of the point E of the general case, and we have: 

=3, n=4, and (6) becomes 

PA’ + PB + PC’ + PD — 4(PD; + 3PD)/4 = k/4 —12GD, 

or 

PA’ + PB + PC — 2PD' — PD; = k/4 — 12GD, 

where k is the sum of the squares on the six edges of (T). 

References 

1. L. N. M. Carnot, Geometrie de Position, Paris, 1803. 

2. Nathan Altshiller-Court, College Geometry, 2nd ed., New York, 1952. 
3. , Modern Pure Solid Geometry, New York, 1935. 

Also solved by G. B. Robison, and the proposer. 

Minimal Weakly Prime Ideal 

4691 [1956, 347]. Proposed by R. E. Johnson, Smith College 

A weakly prime ideal of a ring R is any ideal J having the property that either 

aRCI or RaCI implies that a is in J. Give an element-wise characterization of 

the unique minimal weakly prime ideal of R. 

Solution by Alfredo Jones, Instituto de Matematica y Estadistica, Montevideo, 

Uruguay. Given any ideal I, let: W(I) = {a: R"aR™CI for some m, n>0 }. Ww) 
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is obviously an ideal. W(J) is weakly prime because if ARCW(J), R"aRR™ 

= RaR™' CI, soa€ W(J), and similarly if RaC W(J). And if J is weakly prime 

W(I) =I, so we thus obtain all weakly prime ideals. But if J;CJ. then W(N) 

CWiU2). Therefore the minimal weakly prime ideal is: W(0) = {a: RtaR™=0 

for some m, n>0}. 

Also solved by D. S. Kahn, and the proposer. 

Topological Space with Unique Limits 

4694 [1956, 426]. Proposed by R. W. Bagley, University of Kentucky 

There are simple examples which show that an uncountable topological 

space in which limits are unique (hence 7;) is not necessarily Hausdorff. Are 

there such examples for countable spaces? Here “limit” is used in the usual sense 

of limit of a sequence where the directed set is the positive integers rather than 

limit of a generalized sequence as defined by Kelley and others. With this gen- 

eral definition (where the directed set is allowed to vary), Kelley proved that 

a space is Hausdorff if, and only if, limits are unique. (See Convergence in topol- 
ogy, Duke Math. J., 1950, pp. 277-283). 

I. Solution by H. E. Vaughan, University of Illinois. Frechet, in his book 

Les Espaces Abstraits, pp. 212-213, attributes the following example to Urysohn. 

Let R consist of the rational numbers belonging to the closed interval [0, 1] 
together with an irrational number, and let convergence be defined as follows: 

A sequence of points of R, which, with respect to the usual topology of the real 

line, converges to a rational number is to converge to the same limit in R; a 

sequence which ordinarily converges to an irrational number is to converge, 

in R, to the irrational member of R. It is readily seen that, with this definition 

of convergence, R is an L-space, and an investigation of the neighborhoods of 
its points shows that it is also a topological space (in the modern, very restricted, 

sense of the phrase) which is not a Hausdorff space. 

II. Solution by M. K. Fort, Jr., University of Georgia. Let R be the set of all 

rational numbers. We define T to be the set of all subsets X of R such that either 

X is empty or R—X has at most a finite number of limit points in the real num- 
ber system relative to the usual topology for the real number system. It is easy 

to verify that T is a T; topology for R. However, T is not Hausdorff since any 
two non empty members of T have a non empty intersection. Limits of sequences 

are unique, since a sequence X2, %3, converges to a point relative to 

this topology if and only if x,= ) for all sufficiently large values of n. 

Also solved by G. E. Bredon, Helen F. Cullen, L. R. Ford, Jr., Melvin Henriksen, and the 

proposer. 

| 
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EDITED BY RICHARD V. ANDREE, University of Oklahoma 

All books for review should be sent directly to R. V. Andree, Department of Mathematics, 

University of Oklahoma, Norman, Oklahoma, and not to any of the other editors or officers of 

the Association. 

Mathematics of Business, Accounting, and Finance. By K. L. Trefftzs and E. J. 
Hills. Harper, New York, 1956. 591 pp. $4.50. 

This rather long book is designed to meet the needs of the average and sub- 
average student beginning a commercial education and “may provide the only 

college training in mathematics that many students receive.” The first 116 

pages is a review of the arithmetic usually presented in the first eight grades. 

The next 134 pages reviews most of the first year’s work in high school algebra. 

The remainder is devoted to elementary business problems, mathematics of 

finance, and insurance. 

The aim of the first two parts seems to be to provide a sufficient amount of 

drill necessary to make a student proficient in the fundamental arithmetic opera- 

tions and in basic algebraic techniques. Very little new material is included, the 

authors preferring the time honored “high school” method for obtaining square 

roots to Hero’s method. No attempt is made to develop the real number system. 

In fact an illustration of the use of a rule for multiplying rounded numbers 

(p. 73) implies that the real numbers are not dense and at the same time dis- 

proves the rule. In the algebra part only a half page is devoted to fractional 

and negative exponents, and the binomial theorem and progressions are omitted 

entirely, as are functions and graphs. There are, however, a large number of 

problems, but the student is not trusted with his own analysis. Problems in 

algebra are classified, each type carefully analyzed, and the steps necessary for 

their solution enumerated. 

The student is given little opportunity for analysis in the remainder of the 

book. The analysis of problems of various types, the statement of the rule to be 
followed, the enumeration of the steps necessary to produce a solution is ex- 

pertly done by the authors instead. The student is not asked to use time dia- 

grams, although they occasionally appear to assist the authors in the develop- 

ment of a rule or formula. Equations are written (p. 293) which imply the 

equivalence of dated payments at a simple interest rate. Since this is not a true 

equivalence relation, one wonders if students solving problems by this technique 

may not get different answers if different focal dates are selected. The mere 

statement (p. 353) of transitivity for equivalence at a compound interest rate 

seems hardly sufficient for students to master this important concept. “Finding 

the unknown time” (p. 339) by interpolation in the compound interest table is 

treated at a time when (1+7)* is defined only for integral values of m, and the 

resulting answer is called an approximation of the time when in actuality it is 
the exact time necessary for P to accumulate to S by a later rule (p. 345). Since 

377 
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no knowledge of progressions is assumed the students must accept the formula 

for the amount of an annuity on faith (p. 395). Omitted from the section is the 

concept of equivalence of interest rates, all general annuities, and finding the 

interest rate for an annuity. Installment buying is treated without annuity sym- 

bols, which leads to an unnecessarily complicated method of determining the 

interest rate. The financial tables used have an unusually attractive format. 

This book would not be adequate for the above-average student. It would be 

a pity for future leaders of business and industry to obtain the view that mathe- 

matics is so mechanical and lacking in concepts at a time when recent advances 

in mathematical theory and the use of electronic computing equipment holds 

such promise for the future. 

C. L. SEEBECK, JR. 
University of Alabama 

Integral Transforms in Mathematical Physics. By C. J. Tranter. Wiley, New 

York, 1956. 133 pp. $2.00. 

This is another fine little book in Methuen’s Monographs on Physical Sub- 

jects. The emphasis is on the use of integral transforms in partial differential 

equations with chapters also on evaluation of integrals, combined use of relaxa- 

tion methods and transforms, and a new chapter in this second edition on dual 

integral equations of the type arising from physical problems with one set of 

“mixed” boundary conditions. 

The first four chapters deal with Laplace, Fourier, Hankel, and Mellin trans- 

forms, with their inversion formulae, and with a number of applications. The 
sixth chapter contains a discussion of finite transforms with applications of sine, 
cosine, Hankel, and Legendre transforms. 

A fairly strong background in analysis is required for appreciation of the 
book as this analysis is naturally not presented in such a small book. A course 

in complex variables should suffice. Some knowledge of boundary value problems 

in mathematical physics is also a necessary prerequisite. 

The examples or exercises are adequate for enhancing the understanding. 

The book should serve as a valuable supplement in or as a reference book for 
one who wishes to see whether he can apply integral transform methods to some 

particular problem. 

R. B. DEAL 
Oklahoma Agricultural and 

Mechanical College 

Physics and Mathematics, Series I, Volume I. Progress in Nuclear Energy. Edited 

by R. A. Charpie, et al. McGraw-Hill, New York, 1956. x +398 pp. $12.00. 

This volume is an outgrowth of the United Nations Conference on the Peace- 

ful Uses of Atomic Energy held at Geneva in 1955. It is devoted primarily to 
summarizing in great detail such information concerning neutron physics and 

fissionable nuclei as is needed for the design of nuclear reactors. Most of this 
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data is here published for the first time, the internationally practised policy of 
withholding information on this subject for fifteen years having been relaxed 

specifically on the occasion of this conference. In their attempt to bridge this 

gap in the literature the authors of the eleven chapters in this book are in the 

anomalous position of correlating and distilling a literature which has been inac- 
cessible to most readers. There are numerous descriptions of apparatus, empiri- 
cal curves and tables. Yet the volume is not self contained. There is no introduc- 
tory chapter to define the problems and indicate in what way the chapters in this 

book are addressed to them. Although numerous formulae occur in the first 
250 pages, they are given only for comparison with empirical data. Neither their 

derivation nor the principles on which they are based are to be found here. Only 

in the ensuing 100 pages, in the chapters entitled “The Physics of Fast Reactors” 

and “Heterogeneous Methods for Calculating Reactors” does one find some 
attention to mathematics. In the former, a survey is given of mathematical 

methods used in calculating neutron transport phenomena. The equations con- 
sidered in various approximations are the Boltzmann equation and the diffusion 

equation. The latter chapter, by S. M. Feinberg, of the U.S.S.R., seems to stand 

alone as a contribution of the Russian group in that no indication of related work 
done elsewhere is given. The exposition is correspondingly more self-contained 

and is of interest in that the theory is explicitly formulated for reactors with a 

3-dimensional lattice structure. 

The book appears to be of most value to designers of nuclear reactors. For 
others, it is most likely to be of interest only insofar as the text is a guide to the 

bibliography. 
D. L. FALKOFF 
Brandeis University 

Fundamental Concepts of Algebra. By Claude Chevalley. Pure and Applied 
Mathematics Series, volume VII, Academic Press, New York, 1956. viii 

+241 pp. $6.80. 
Fundamental Concepts offers a pronounced Bourbaki flavor. Indeed in a 

sense, the book may be considered as a welcome abridgment into the English 
language from Bourbaki’s multi-volumed Eléments de Mathématique. The au- 

thor, making no pretense to cover all the basic ideas in algebra, omits such 
topics as the theory of fields in order to elucidate modules and exterior algebras. 
He devotes approximately three-quarters of the pages in the volume to the third 
and fifth chapters, entitled respectively “Rings and Modules” and “Associative 
Algebras.” The other three chapters discuss monoids, groups, and (very briefly) 

algebras. 

The exposition is very closely knit, leaving the reader little opportunity to 

skip. The logical development advances steadily with a dynamic quality, so the 
reader also has little desire to skip. Yet the reader is not pampered. He must 
understand and assimilate the concepts quickly, lest he be unprepared to com- 
prehend the subsequent sections. Within a section the arrangement of material 
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is typically as follows: introductory description of new ideas, theorem, proof, 

theorem, proof, more new concepts, theorem, proof. Paragraphs are frequently 

very lengthy. Long proofs require high concentration by the reader; rarely is 
there found a hint of the future path for the argument or a summary of the por- 

tion of the assertions already proved. An excerpt from the preface concerning 
motivation is highly indicative of the style of writing: “what the student may 

learn here is not designed to help him with problems he has already met but 

with those he will have to cope with in the future; it is therefore impossible to 

motivate the definitions and theorems by applications of which the reader does 

not know the existence as yet.” With this philosophy of presentation, the 

exposition displays considerable austerity. Examples are cited when certain alge- 
braic structures are introduced, but illustrations for various significant theorems 

or major results are not attempted. The theory is relentlessly pushed onward. 

A highlight of the book is the exercise list concluding each chapter. The 

problems, of which there are more than a hundred, seem unusually well chosen to 

offer the solver useful information and a broadening outlook on the theory. 

There is a variety of errata which can easily be removed in a next printing 

and which, for the most part, will delay the reader only momentarily. 

The preface suggests use of the text in a first graduate course. The desirabil- 

ity of every serious graduate student’s learning the book’s content at an early 

stage should not be challenged. Nevertheless the teacher of a beginning graduate 
student should warn him that studying this volume demands intensive work. 

The dividends paid will be well worth the effort, many times over. 
R. A. Goop 
University of Maryland 

BRIEF MENTION 

Publications of potential interest to mathematicians, but which are more 
properly reviewed in other periodicals, are described below. 

Mathematics for Electronics with Applications. By Henry M. Nodelman and 

Frederick W. Smith. McGraw-Hill, 1956. vii+391 pp. $7.00. 

This interesting book is one which is apt to be overlooked by mathemati- 
cians. It is quite possible that the misuse of technical mathematical vocabulary 
will so mitigate against this book that the important modern applications of 
mathematics to electronics will be lost. Statements such as, “a rectangular 

matrix is equivalent to a square matrix” (page 156) and “the determinant of a 

rectangular matrix is always zero” (page 159) and the implication on page 215 

that the word “isomorphic” is synonymous with the phrase “one-to-one cor- 

respondence” will justifiably raise the ire of mathematicians, and make this book 
unsuitable as a mathematical text. Nevertheless, competent mathematicians 
may well wish to examine it for the many current applications which it contains. 
It is a sad commentary that the same publishing house which carefully prepared 

Modern Mathematics for the Engineer by Beckenbach would fail to correct the 

i 

n 

s 

e 

Nn 

t 

a 

0 

Cc 

I 

1 

e 

Cc 

t 

( 

I 

d 

4 



wi 

1957] RECENT PUBLICATIONS 381 

misuse of technical mathematical vocabulary in the volume here under discus- 

sion. This text could well have helped bridge the current gap between electrical 

engineering and mathematics, were it not for the misuse of certain important 
mathematical words. 

One may shudder at the inclusion of the “cross-hatch” method of evaluating 
three by three determinants or wonder why, in today’s world, more work on 

actual circuit design using Boolean algebra is not included. Still the collection 

of “up-to-date problems based on current engineering practice” should be wel- 

comed by teachers seeking to teach mathematics to engineering students. 

Brief Analytic Geometry. By Thomas E. Mason and Clifton T. Hazard. Ginn, 
1957. 229 pp. $3.50. 

The authors state that “no major changes in subject matter or methods of 
presentation have been made” in this third edition of Brief Analytic Geometry. 

“Changes have been made in the numerical data of many of the exercises. Sev- 
eral new exercises have been added. Few of the illustrative examples have been 
changed.” This well-known book needs no additional review other than to men- 

tion a new edition has been prepared. 

Calculus Refresher for Technical Men. By A. A. Klaf. Dover 1956. 431 pp. $1.95. 

This paperback calculus refresher is in no way comparable to the excellent 
paperbacks by Oakley or by Graesser and Petersen. 

Trigonometry Refresher for Technical Men. By A. A. Klaf. Dover Publications 
Inc., 1956. 629 pp. $1.95. 

The Icosahedron and the Solutions of Equations of the Fifth Degree. By Felix 
Klein. Dover, 1956. xvi+289 pp. $1.85. 

American geometers will indeed welcome the inexpensive paperback reprint 

of the English translation of Klein’s historical volume on the Icosahedron, 

originally published in 1884 and translated into English in 1888. This work was 

reviewed extensively on pages 45-61, Vol. 9 (1887) American Journal of Mathe- 
matics by F. N. Cole. 

Table of the Fresnel Integral To Six Decimal Places. By T. Pearcey. Cambridge 
University Press. 63 pp. $2.50. 

These six and seven figure tables of Fresnel integrals will be welcomed by 

persons interested in diffraction theory. The clear type and adequate margins 

are a relief. : 

Intermediate Algebra. By Paul K. Rees and Fred W. Sparks. McGraw-Hill, 1956. 
x+306 pp. $3.90. 

The authors state that the features of the first edition have been “all pre- 

served” and that “the chief purpose in the preparation of the second edition of 
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Intermediate Algebra was to provide a selection of problems greater in number 
and more carefully graded than those in the first edition.” Many teachers will 
undoubtedly welcome the new edition of this old favorite. 

Mathematics Magic and Mystery. By Martin Gardner. Dover, 1956. xii+176 pp. 
$1.00. 

This collection of mathematical and near mathematical tricks, puzzles and 

games is a welcome low cost addition to the library of anyone interested in such 

pastimes, and who isn’t? 

Electronic Computers. Edited by T. E. Ivall. Philosophical Library, 1956. 163 pp. 

$10.00. 

Electronic Computers is not an advanced text for experts, but instead is 
definitely for the non-expert. Still it contains much of interest to mathematicians 
who are trembling on the brink of modern machine computation, both analogue 

and digital. While most of the machines mentioned are English, the American 

counterparts are well-known and the circuit designs and principles are inter- 

national. A thoroughly enjoyable book giving general principles rather than 
specific “cook-book” directions. 

NEWS AND NOTICES 

EpITEp By EpitH R. SCHNECKENBURGER, University of Buffalo 

Readers are invited to contribute to the general interest of this department by sending news 

items to Edith R. Schneckenburger, University of Buffalo, Buffalo 14, New York. Items 

should be submitted at least two months before publication can take place. 

CONFERENCE ON MATRIX COMPUTATIONS 

A Conference on Matrix Computations will be held at Wayne State University on 
September 3-6, 1957. The purpose of this conference is to bring together those persons 
who are concerned with the mathematical methods used in computing centers and who 
can communicate both in the technical language of digital computers and in the sym- 
bolism of matrix algebra. 

Morning sessions will be devoted largely to invited addresses. Methods now being 
used to solve systems of linear equations, to compute the inverse of a matrix and to find 

characteristic values and characteristic vectors will be described. Papers suggesting new 
methods for the solution of standard problems will be solicited and an especial effort will 
be made to bring to attention new problems demanding the efforts of mathematicians. 
Smaller groups with well defined common interests will form discussion panels in the 
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afternoon. It is expected that a report of methods in use at some of the main European 
centers will be given. 

There is no tuition fee for the conference. Individuals who wish to present papers or 
to suggest speakers should contact Professor Wallace Givens, Chairman, Department 
of Mathematics, Wayne State University, Detroit 2, Michigan. 

SUMMER SESSIONS 

The following institutions announce advanced courses in mathematics for the summer 
of 1957. 

Catholic University of America, June 26 to August 9: Dr. Ramler, college geometry, 
analytic projective geometry, ordinary differential equations; Dr. Moller, higher algebra 
I; Dr. Wiegmann, higher algebra II, introduction to matrix theory; Dr. Taam, advanced 
calculus I; Dr. Saworotnow, advanced calculus II; Dr. Finan, basic concepts of mathe- 

matics. 
Columbia University, July 3 to August 16: Dr. Taft, introduction to higher algebra; 

Dr. Mendelson, differential equations; Mr. Gordon, probability; Professor Chevalley, 

fundamental concepts of mathematics, higher algebra; Professor Taylor, theory of func- 
tions of a real variable; Professor Feldman, theory of functions. 

Syracuse University, July 1 to August 9: Professor Gelbart, analysis and applications 
I (differential equations); Professor Davis, an intermediate course in algebra, teaching 
high school mathematics; Professor Hemmingsen, history of mathematics; Professor 
Exner, analysis of elementary mathematics; Professor Gilchrist, programming for digital 
computers. August 12 to September 13: Professor Kostenbauder, analysis and applica- 
tions II (vector analysis). 

University of California, Berkeley, Department of Statistics, June 17 to July 27 and 
July 29 to September 7: Professor Neyman, individual research; Professors Neyman, Fix 
and Smith (University of Cambridge, England), research seminar in statistical problems 
of health. This course will be given in cooperation with Drs. Brooke, Hall, Serfling, and 

Willis (Communicable Disease Center, Public Health Service, Atlanta) and Dr. Mantel 
(National Institutes of Health, Bethesda). They will present the medico-biological side 
of practical problems preceding the statistical discussions. 

University of California, Los Angeles, June 24 to August 2: Professor Horn, functions 
of a complex variable; Professor Straus, theory of relativity; Professor Bell, fundamental 
mathematical concepts. 

University of Colorado, June 17 to August 23: Dr. Zirakzadeh, foundations of geom- 
etry; Professor McKelvey, topology; Professor Bunt, teaching of secondary school 
mathematics, mathematics workshop in teaching problems; Professor Magnus, history 
of mathematics, foundations of analysis; Mr. Householder, mathematical statistics; 

Professor Rogers, finite mathematics. 
University of Wisconsin, July 1 to August 24: Professor F. B. Jones (University of 

North Carolina), topics in topology, advanced calculus; Dr. Walker (American Optical 
Co.), differential geometry; Dr. Artzy (Israel Institute of Technology), advanced topics 
in algebra, theory of probability; Professor Fadell, elementary topology, higher analysis; 
Professor Wagner, determinants and matrices; Dr. Kruskal, differential equations; Dr. 
Payne, foundations of algebra; Mr. Evey, theory and operation of computing machines. 

PERSONAL ITEMS 

Dr. F. E. Browder, Yale University, has been awarded a National Science Founda- 
tion Postdoctoral Fellowship. 

Dr. C. E. Shannon, a professor at Massachusetts Institute of Technology and a 
mathematical consultant in Bell Telephone Laboratories research department, has re- 
ceived the 1956 Research Corporation Award for his work in information theory. 

: 
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New Jersey State Teachers College, Montclair: Associate Professor B. E. Meserve has 
been appointed Chairman of the Department of Mathematics; Dr. D. R. Davis, Chair- 
man of the Department, has retired. 

University of Minnesota, College of Science, Literciure and Arts: Visiting Associate 
Professor Bjarni Jénsson, University of California, Berkeley, has been appointed As- 
sociate Professor; Associate Professor M. D. Donsker has been promoted to Professor; 
Assistant Professor W. S. Loud has been promoted to Associate Professor; Dr. G. E. 
Baxter and Dr. J. M. Slye have been promoted to Assistant Professors; Assistant Profes- 
sor Ella Thorp has retired with the title Assistant Professor Emeritus. 

Wayne State University: Dr. Karl Zeller, Tiibingen University, Germany, has been 
appointed Associate Professor; Professor G. G. Lorentz is on leave of absence and has 
been appointed Visiting Professor at the University of Michigan. The School of Business 
Administration and the Computation Laboratory announce a new Master’s Program in 
Automatic Data Processing. 

Professor D. B. Ames, University of New Hampshire, has accepted a position as 
research mathematician with Hughes Aircraft Company, Culver City, California. 

Dr. R. W. Bagley, Associate Research Scientist, Lockheed Aircraft Corporation, 
Sunnyvale, California, is on leave for the year to work on an operations research project 
at Stanford University. 

Mr. H. W. Becker has been elected Secretary-Treasurer of the Omaha-Lincoln Sec- 
tion, Institute of Radio Engineers. 

Assistant Professor Kurt Bing, Rensselaer Polytechnic Institute, has been promoted 
to Associate Professor. 

Assistant Professor W. E. Briggs, University of Colorado, has been appointed Direc- 
tor of the University Academic Year Institute for Secondary School Teachers of Science 
and Mathematics sponsored by the National Science Foundation. 

Professor Arthur Erdélyi, California Institute of Technology, is on leave and has been 
appointed Visiting Professor at Hebrew University, Jerusalem, Israel. 

The annual award of the Duodecimal Society of America for 1956 has been given to 
Jean Essig, Inspector General of Finances for France. 

Dr. F. G. Fisher, Navy Electronics Laboratory, San Diego, California, has accepted 
a position as a consulting mathematician with the U. S. Navy, Bureau of Ordnance, 
Washington, D. C. 

Mr. J. L. Freier, is now a mathematician with Project Cyclone, Reeve Instrument 
Company, New York, New York. 

Mr. R. M. Gordon has been appointed Supervisor, Customer Education, ElectroData 
Division, Burroughs Corporation, Pasadena, California. 

Assistant Professor R. P. Gosselin, University of Connecticut, has been awarded a 
grant from the National Science Foundation for research in Fourier series. 

Mr. F. D. Grogan, Quality Surety Office, Rocky Mountain Arsenal, Denver, Colo- 
rado, has a position as a systems analyst, Flight Controls Group, Glenn L. Martin Com- 
pany, Denver. 

Assistant Professor W. T. Guy, Jr., University of Texas, has been promoted to As- 
sociate Professor. 

Mr. H. N. Hadley, Naval Powder Factory, Indian Head, Maryland, has accepted a 
position as senior reliability analyst with the AVCO Manufacturing Company, Law- 
rence, Massachusetts. 

Mr. J. L. Hatfield, Mary Washington College, has been appointed Assistant Professor 
at College of William and Mary in Norfolk. 

Associate Professor L. S. Hill, Hunter College, has been promoted to Professor. 
Associate Professor R. C. James, Haverford College, has been appointed Professor 
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and Chairman of the Department of Mathematics, Harvey Mudd College, effective Sep- 
tember, 1957. 

Mr. B. V. Lachapelle, Cornell University, has been appointed a research associate 
at the University of Montreal. 

Professor Harry Langman, Detroit Institute of Technology, has been appointed Pro- 
fessor at Ohio Northern University. 

Mr. J. G. Leghorn, University of Colorado, has accepted a position as an engineer 
with the Glenn L. Martin Company, Denver, Colorado. 

Dean A. E. Meder, Jr., Rutgers University, is on leave of absence and has been ap- 
pointed Executive Director of the Commission on Mathematics. 

Mr. J. W. Mettler, Teacher, Trenton Central High School, New Jersey, has been 
appointed Assistant Professor at Pennsylvania State University. 

Mr. George Millman, Analytical Statistician, Office of the Quartermaster General, 
Army Department, Washington, D. C., is now a mathematician at the Evans Signal 
Laboratories, Army Signal Corps, Ft. Monmouth, New Jersey. 

Dr. M. E. Muller, Senior Mathematician, Scientific Computing Center, International 
Business Machines Corporation, New York City, is on leave of absence as a research as- 
sociate at Princeton University. 

Dr. R. Z. Norman, Princeton University, has been appointed Assistant Professor at 
Dartmouth College. 

Mr. S. E. Puckette, Yale University, has been appointed Assistant Professor at the 
University of the South. 

Professor Emeritus L. L. Silverman, Dartmouth College, has been appointed Visiting 
Professor at the University of Houston. 

Dr. G. H. Swift, Duke University, has accepted a position as applied science repre- 
sentative with International Business Machines Corporation, Seattle, Washington. 

Dr. E. D. Watters, Jr., Senior Mathematician, Bendix Research Laboratories, De- 

troit, Michigan, is an engineer at Westinghouse Electric Corporation, Baltimore, 
Maryland. 

Dr. E. S. Wolk, University of Connecticut, has been promoted to Assistant Professor. 
Mr. J. T. Yamada, University of Toronto, has been appointed Lecturer at McGill 

University. 

Mr. Elmer Latshaw, a mechanical engineer, Naval Air Materiel Center, Philadelphia, 
Pennsylvania, died on January 18, 1957. He was a member of the Association for thirty- 
seven years. 

Mr. J. M. Pellegrino, Mathematician, Electric Boat, Groton, Connecticut, died on 

March 19, 1956. 
Miss Audrey I. Richards, Utica College of Syracuse University, died on September 

15, 1956. 
Professor A. C. Schaeffer, Chairman of the Department of Mathematics, University 

of Wisconsin, died on February 2, 1957. He was a member of the Association for nine 
years. 

Brigadier General R. H. Somersdied on January 22, 1957. He was a charter member of 
the Association. 

Professor John von Neumann, Institute for Advanced Study, died on February 8, 

1957. He was a member of the Association for twenty-four years. 

_| 
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THE MATHEMATICAL ASSOCIATION OF AMERICA 

Official Reports and Communications 

THE JANUARY MEETING OF THE NORTHERN CALIFORNIA SECTION 

The nineteenth annual meeting of the Northern California Section of the Mathe- 
matical Association of America was held at the University of California, Berkeley, 
January 12, 1957. Professor H. L. Alder, Chairman of the Section, presided at the 
morning and afternoon general sessions. Two concurrent sessions were also held in the 
afternoon—one on the teaching of mathematics and one on research. Professor Alder 
presided at the former and Professor Harley Flanders, Vice-Chairman of the Section, at 

the latter. There were 156 persons in attendance at the meeting including 87 members of 
the Association. 

Following Professor Blakeslee’s report on the 1956 high school contest, the section 
voted unanimously to endorse the proposal that the Association sponsor a nationwide 
high school mathematics contest. 

At the business meeting the following officers were elected for the coming year: 
Chairman, Professor Harley Flanders, University of California, Berkeley; Vice-Chair- 
man, Professor B. J. Lockhart, U. S. Naval Postgraduate School; Secretary-Treasurer, 
Professor Roy Dubisch, Fresno State College. 

By invitation of the section, Professor David Blackwell, University of California, 
Berkeley, delivered an address at the morning session entitled Statistical Prediction of 
Sequences. Abstract of this address follows: 

A method of prediction of successive elements in an infinite sequence of zeros and ones, based 

on observation of previous elements, is described. The method has the property that, applied to 

any sequence, the proportion of correct predictions for the first n elements of the sequence will be 

at least max (pn, 1—pn) —e for all sufficiently large m, where pn is the proportion of ones in the 

first n elements. An extension to more general statistical decision problems is indicated. 

The following papers were presented: 
1. An approximation to the equally tempered musical scale, by Professor I. J. Schoen- 

berg, University of Pennsylvania and Stanford University. 

The author presented some of the interesting historical researches of Professor J. M. Barbour 

on the equally tempered scale, contained in Barbour’s article A geometric approximation of the roots 

of numbers, this MONTHLY, vol. 64, 1957, pp. 1-10. 

2. The Mathematical Association of America high school contest, by Professor D. W. 
Blakeslee, San Francisco State College. 

The procedures and results of the 1956 Annual Contest for high school students sponsored by 

the Northern California Section were reviewed. It was felt that the contest was highly successful; 
seventy-three schools and over 2300 students having participated. 

3. The visiting-lectureship program for high schools, by Professor H. L. Alder, Uni- 
versity of California, Davis. 

Announcement is made of a program sponsored by the Northern California Section of the 

Mathematical Association of America whereby mathematicians from seven universities and col- 
leges in Northern California are available to give lectures in high schools on a topic of general 

interest in mathematics at either a mathematics class, a special meeting arranged for the purpose, 
a school assembly, or (if a fairly good attendance can be assured) a mathematics club meeting. 
Invitation to avail themselves of this opportunity will be sent initially to about 70 high schools. 
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4. Reflecting chess bishops, by Professor S. Stein, University of California, Davis. 

A reflecting chess bishop is a chess bishop which moves along a diagonal until it hits the border 

of the chess-board and then reflects off like a ray of light (if it hits a corner it reflects directly back). 

THEOREM: Two reflecting bishops can be placed on an m Xn chess-board to cover all squares if and only 
if (m—1, n—1) =1. 

5. On Picture-Writing, by Professor G. Polya, Stanford University. 

This paper appeared in this MONTHLY, vol. 63, 1956, pp. 689-698. 

6. Factors of Fermat numbers, by Professor R. M. Robinson, University of California, 
Berkeley. 

Fermat believed that the numbers F,,=2?"+1 are all prime, but Euler showed in 1732 that 

F, has the factor 641. Actually, no Fermat prime has ever been identified except Fo=3, Fi=5, 

F,=17, Fs=257, and F,=65537. The number F,, is now known to be composite in twenty-nine 

cases, namely for m=5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 18, 23, 36, 38, 39, 55, 63, 73, 117, 125, 144, 

150, 207, 226, 228, 268, 284, 316, 452. In fourteen of these cases (m>38, m+73), the compositeness 

was first established in 1956, using a high-speed computer (SWAC) and a program coded by the 
author. For example, F207 was found to have the prime factor 3-2%¢*+1. 

7. An eigenvalue problem for ordinary differential equations, by Professor S. P. Dili- 
berto, University of California, Berkeley. 

Let W(t, 62) be the matrix solution of the real linear (matrix) ordinary differential equation 

(*) dW/dt = A(t,t + 

determined by the initial condition W(0, 6.)=JZ, where A and W are n-square, and A(6;, 62) is 
continuous in 6, 62 with period w; in 6;(¢=1, 2). 

Let S denote the space of all continuous w:—periodic n-vector functions of 2, ¢.g., a(@:)ES 

implies = (a1(62), , an(@2)), where each a;(@,) is C’ and has period in A transforma- 

tion T: SS is defined by: y(@)ES, (Ty)()ES, where (Ty) (62) = W(w:, The 
eigenvalues of T are studied and shown to characterize the limit (++ ©) behavior of the solu- 
tions of (*). 

8. A note on Rouche’s theorem, by Professor C. L. Clark, Oregon State College. 

The usual condition of Rouche’s theorem that | g(z)| < | f (z)| on a simple closed curve C lying 

in a simply connected region within which g(z) and f(z) are analytic can be replaced by the con- 

dition that f(z) and f(z) +g(z) lie in the same component of the mapping space (Z —O)®, i.e., the 
space of all continuous mappings of C into Z—O, Z being the complex plane and O the origin. 

This generalization of Rouche’s theorem is obtained by elementary use of the index function as 
developed by G. T. Whyburn and C. Kuratowski and is also an improvement of other generaliza- 
tions. The results suggest further questions concerning zeros of functions. 

9. The teaching of interpolation, by Professor H. A. Arnold, University of California, 
Davis. 

Even in elementary courses it is important to teach the retention of extra “guard figures” in 

numbers used in numerical calculations. These numbers include input data and the results of inter- 
polations. Teachable numerical examples are given to show this is feasible. 

10. A heuristic outlook in checking, by Professor C. M. Larsen, San Jose State College. 

Most teachers have observed students who, when asked to check their work, make wrong 

answers come out “right.” Such students may be conditioned to force the checks when teachers say, 
for example, “To check a solution, put it into the given equation and make sure the equation is 
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satisfied.” An alternative attitude, aimed at discovering error, rather than checking correctness, 
may be encouraged by advising, “To test a solution, put it into the given equation and hunt for 

discrepancies.” Some evidence was presented indicating that such advice may lead students to 
think more critically and constructively about their work. 

11. Some observations on teaching mathematics for the computer age, by Professor Irving 
Sussman, University of Santa Clara. 

A digest is made of diverse competent opinions on the impact which the emergence of electronic 
digital computers will have, or should have, on the teaching of undergraduate and preparatory 

mathematics. Although the expert opinions vary in details, there is general agreement that im- 

portant changes both in course content and teaching methods have become necessary—this even 

in the pure mathematics curricula. The question of how such redirection of emphasis is to be 
brought about in view of the loss of such a large percentage of potential teaching personnel to 
industry, and in the face of traditional academic inertia, is posed as an unsolved problem. 

Roy Dusiscu, Secretary 

CALENDAR OF FUTURE MEETINGS 

Thirty-eighth Summer Meeting, Pennsylvania State University, University Park, 
Pennsylvania, August 26-27, 1957. 

Forty-first Annual Meeting, University of Cincinnati and Hotel Sheraton-Gibson, 
Cincinnati, Ohio, January 31, 1958. 

The following is a list of the Sections of the Association with dates of future meetings 
so far as they have been reported to the Associate Secretary. 

ALLEGHENY MovunTAIN, Westinghouse Re- 

search Laboratories, Pittsburgh, Pennsyl- 
vania, May 4, 1957. 

Ixutnots, Illinois State Normal University, 
Normal, May 10-11, 1957. 

InpIanA, May 4, 1957. 
Iowa 

KENTUCKY 
LovuIsIANA- MISSISSIPPI 
MARYLAND-DistricT OF COLUMBIA-VIRGINIA, 

Johns Hopkins University, Baltimore, 
Maryland, May 4, 1957. 

METROPOLITAN NEW YORK 
MICHIGAN 

Mrnnesora, Carleton College, Northfield, May 

11, 1957. 
Missouri 
NEBRASKA 
NEw JERSEY, Fall, 1957. 

NORTHEASTERN, Dartmouth College, Hanover, 
New Hampshire, November 30, 1957. 

NORTHERN CALIFORNIA, January 18, 1958. 
OHIO 

OKLAHOMA 
PaciFic NORTHWEST, State College of Washing- 

ton, Pullman, June 14, 1957. 
PHILADELPHIA, November 28, 1957. 
Rocky Mountain, Colorado School of Mines, 

Golden, May 3-4, 1957. 
SOUTHEASTERN 
SOUTHERN CaALiForniA, San Diego State Col- 

lege, May 11, 1957. 
SOUTHWESTERN 
TEXAS 

Uprer New York Strate, Skidmore College, 

Saratoga Springs, May 4, 1957. 
Wisconsin, Wisconsin State College, White- 

water, May 11, 1957. 
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Do you belong in IBM Applied Science? 

This Consulting Job is now open! 

Promoted only a short time ago, this man 

formerly worked as an IBM Applied Sci- 
ence Special Representative for the petro- 
leum industry in Houston. Such service to 

the oil companies has become virtually es- 

sential. This man, for instance, counseled 

petroleum scientists and executives in the 
application of digital computers for ex- 
ploration, production, and refining. He or- 
ganized conferences and directed seminars 
. .. advising on coding systems and tech- 
niques. In addition to his other duties, he 

coordinated IBM contacts nationally with 

the petroleum industry in technical areas. 

Could you fill it? 
Rewarding careers are open to men with 
degrees in: 

© Chemistry © Mathematics 
© Economics © Physics 

© Engineering © Statistics 

A previous knowledge of computing is 
not necessary. IBM will pay for your 
training. 

Throughout the United States, IBM 
maintains approximately 100 Applied 
Science offices. You may request assign- 
ment in the location that is most desir- 
able to you. 

IBM Applied Science has quadrupled 
its staff during the past three years. In 
1956, over 70 promotions were con- 
ferred. Doesn’t this growth factor alone 
suggest more room for your abilities— 
more professional growth? 

Why not act today? Write, outlining 
the details of your background and in- 
terests, to: 

P. H. Bradley, Dept. 1405 
International Business Machines Corp. 
590 Madison Avenue 
New York 22, New York 

DATA PROCESSING 

ELECTRIC TYPEWRITERS 

° MILITARY PRODUCTS 

SPECIAL ENGINEERING PRODUCTS 

TIME EQUIPMENT 

------------ 

Responsibilities: 

© Advise customers and prospects of 
the scientific and technical applica- 
tions of IBM electronic equipment. 

| 
| 

® Analyze customers’ technical prob- 
lems in terms of machines and their 

| applications. 

| ® Deliver talks about the computing 
| field—supported by demonstrations— 

to customers, prospects, scientific 

| 
| 
| 

® Maintain constant and close contact 
with the customers’ top management 
and associated IBM executives. 

® Continually analyze customer appli- 
cations and develop new machine 
uses. 

© Arrange for training of customers’ 
executives, methods analysts, and op- 
erators of IBM electronic equipment. 

DATA 
PROCESSING 

| 
| 
| 
| 
| 
| 
| 

groups, and IBM personnel. |. 

| 
| 
| 
| 
| 
| 
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A “Take. part in the denies 
naval propulsion at Combustion Engi- 

“neering’ s Nuclear Research and Development 
Center, located on a 535 acre site in the 

Permanent positions available in the 
ysis of programming problems for high-speed digital 

@ OPPORTUNITY FOR 
<= INDIVIDUAL GROWTH 

A NEW DIVISION UBERAL BENEFITS. 
OF A PIONEER IN THE 

NERATING Submit Resume to 
STEAM ct Frederic A. Wyatt 

EQUIPMENT 

COMBUSTION ENGINEERING, INC. 
REACTOR DEVELOPMENT DIVISION, WINDSOR, CONN. 
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WEAPONS EVALUATION 
and 

MISSILE FEASIBILITY STUDIES 
Research Organization needs men for weapons evaluation and missile feasibility 

studies. Experience in one or more of the following fields required: statistics, 
physics and possibly game theory. Individuals must be imaginative, creative and 
original in dealing with concepts. 

These positions offer opportunity to work on a wide variety of problems which 

encompass all forms of air and ground warfare. Work in small project group and an 

intimate environment of diversified scientific talents. 

If you are interested in employment in a long established research organization in 

the metropolitan area offering cultural and educational advantages and access to a 
university campus, please send us your resume. Please send replies to: 

E. P. Bloch 

ARMOUR RESEARCH FOUNDATION 

of 

Illinois Institute of Technology 

10 West 35th Street 

Chicago, Illinois 

APPLIED MATHEMATICIANS 

Exceptional opportunities are now available for applied 

mathematicians at the Jet Propulsion Laboratory. Qualified. 

people are needed for advanced research in numerical analysis 

and the application of automatic digital computers to the solution 

of problems in applied mathematics. 

A Ph.D. degree, or its equivalent, with a background in 

numerical analysis is required. Ability to work independently 

is desirable. The work is supported by modern digital computer 

facility and excellent staff accommodations. 

The Laboratory is a continuing operation devoted to scientific 

research and development and offers many challenging oppor- 

tunities for increasing responsibility in an expanding activity. 

Your resume will receive immediate consideration if for- 

warded as soon as possible. 

PROPULSION LABORATORY 
A DIVISION OF CALIFORNIA INSTITUTE OF TECHNOLOGY 

PASADENA, CALIFORNIA 



MATHEMATICIANS © STATISTICIANS 

PHYSICISTS © ENGINEERS 

CREATE 

Electronic Countermeasures 

To Outwit the Missiles 

at SYLVANIA 

in San Francisco Bay Area 

Continued Expansion in systems work has created 
openings at all levels for: 

Mathematicians 

Statisticians 

Physicists 

Engineers 

IN RESEARCH & DEVELOPMENT 

in electronic countermeasures against guided missiles. 

Analysis 
Advanced Design 

Simulation 

Operations Research 

EDUCATIONAL OPPORTUNITIES 

We offer financial assistance to those who wish to 
take additional course work at any of the four univer- 

sities and colleges located in our immediate vicinity. 

Address inquiries to: 

Alfred E. Halteman 
Systems and Projects Dept. 

ELECTRONIC DEFENSE LABORATORY 

SYLVANIA 
SYLVANIA ELECTRIC PRODUCTS INC. 

P.O. Box 205 

Mountain View, California 
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Just Publishe 

SOLID GEOMETRY 
By Huco ManpELBauM and Samuet Conte—both Wayne State University 

This new book consistently applies modern mathematical thought to the 

teaching of elementary solid geometry. Placing less emphasis on axiomatics 

and systematic proofs of theorems than classical treatments offer, this new 

textbook concentrates on understanding and application. It introduces con- 

cepts of projective geometry in such a way that parallel elements lose the 

exceptional status they hold in Euclidean geometry. Thus, cylinders and 

prisms, cones and pyramids are viewed as interrelated to each other by their 

mode of generation. The concept of dualism familiarizes the student with 

the typical approach of modern mathematical thinking: conceiving manifold 

details as a whole by a principle that unifies the details on a higher level. 

Book completely covers the relationships of points, lines, and planes, and 

the measurements of all the more common solids. There are stimulating, 

graded problems—including special problems for able students; many shaded 

illustrations for increased space conception; helpful instruction on how to 

draw geometric figures in perspective. 289 ills., 6 tables; 259 pp. 

THE RONALD PRESS COMPANY ° _— 15 East 26th St., New York 10 

CALCULUS WITH ANALYTIC GEOMETRY 

by RICHARD E. JOHNSON, Smith College, and FRED KIOKE- 
MEISTER, Mt. Holyoke College 

This new text is a rigorous, yet intuitive, introduction to the calculus 
designed to fill textbook needs created by the modern trend toward more 
comprehensive courses. Topics from analytic geometry have been included 
to make the book self-contained for its geometrical applications. 

Distinctive Characteristics 

Emphasizes understanding of mathematics instead of problem solving 
techniques. 

Treats elementary calculus rigorously: limits are defined in the well-known 
epsilon-delta manner, and then all the limit theorems are proved using 
this definition. 

Stresses the intuitive meaning of the limit concept at all times. 

Chapter 6 contains an unusually complete discussion of extrema of a func- 
tion. In chapters 8 and 9 the integral of a continuous function is dis- 
cussed both from the standpoint of a least upper bound of lower sums 
and from that of a limit of a sequence of Riemann sums. 

664 pages 6" x9" + Published May 1957 + Text list $7.95 

examination copies available, write to: 

ALLYN AND BACON COLLEGE DIVISION 

41 Mt. Vernon Street, Boston 8, Mass. 



Important Volumes in 

THE APPLETON-CENTURY MATHEMATICS SERIES 

INTERMEDIATE ANALYSIS 

By JOHN M. H. OLMSTED. Designed for courses in mathematical 

analysis or theory of functions, this text presupposes only one 

year of calculus. 305 pages, $6.00. 

COLLEGE GEOMETRY 

By LESLIE H. MILLER. This newest volume of this series encourages 

constructive reasoning by stressing generalizations, alternate 

solutions, and related problems. 201 pages, $4.50. 

THE MATHEMATICS OF FINANCE 

By FRANKLIN C. SMITH. Emphasis on basic principles marks 

this introductory text in the mathematics of finance for students of 

business administration. 356 pages, $4.65. 

APPLETON-CENTURY-CROFTS, INC. 

35 West 32nd Street, New York 1, N.Y. 

Van Nostrand cartes of the 
announces with pride areas of uate mathematics. 

niversity o ifornia FESSOR PAUL 
Hatmos the University of Chicago. 

The first volume of this new series, INTRODUC- 

essor 0 1080) niversity, 

Mathematics related to effi- by Hucu E. Srerson, Associate Professor of Mathe- 
ciency in per. 1, business matics, Michigan State University 

Published. and civic affairs... 
Completely new and modern in scope, this realistic 

text gives a dynamic, practical treatment of the 

MATHEMATICS siner loans, buying «Kame, socks bonds, on 

ministration or mathematics, this text is carefully 
— to permit flexibility in its use, and to make 
possible maximum attention to applications. 

D. Van Nostrand Company, Inc. 

120 Alexander Street Princeton, New Jersey 
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FUNDAMENTALS OF MATHEMATICS 
by MOSES RICHARDSON, Brooklyn College 

This text combines sound mathematics with an unusually lucid and 
interesting exposition. 

e gives an insight into the cultural and practical significance of 
mathematics as one of the fundamental branches of human 
thought 

¢ stimulates the development of logical thinking 

© trains the student to interpret mathematical data and to apply 
principles in a wide variety of situations. 

1941 525 pp. $5.25 

METHODS IN NUMERICAL ANALYSIS 
by KAJ L. NIELSEN, Head of the Mathematics Division of the U. S, Naval 
Ordnance Plant, Indianapolis 

Incorporating recent developments and modern methods, Dr. Niel- 
sen considers the analysis of tabulated data and the numerical 
methods of finding the solution to equations. Essentials are clearly 
focused and emphasis is placed on doing and applying, with many 
illustrative examples, tables of necessary mathematical constants, 
and valuable schematics included. 

1956 382pp. $6.90 

VECTOR AND TENSOR ANALYSIS 
by NATHANIEL COBURN, University of Michigan 

Dr. Coburn provides (1) a unified treatment of vector and tensor 
analysis with a comprehensive coverage of compressible fluids and 
homogeneous turbulence, and (2) considerable emphasis on the 
discussion of cylindrical and spherical coordinates. The author de- 
velops a general theory of vectors and tensors before making ap- 
plications to specific subjects. Vector analysis is treated in the con- 
= Gibbs manner with a distributive star product also intro- 
uced. 

1955 341pp. $7.00 

ELEMENTARY THEORY OF EQUATIONS 
by SAMUEL BOROFSKY, Brooklyn College 

“The author's aim is to present facts concerning the roots of algebraic 
equations and methods for obtaining them and to introduce some 
concepts of modern algebra. The concepts of field and polynomial 
over a field are used throughout, fields being limited to those that 
are subfields of the complex number system. No calculus is re- 
quired.” from the Aeronautical Engineering Review... . this book 
is a welcome addition to those commonly used and could do much 
to revive interest in the course.’ Herbert Hannon, Western Michigan 
College, in The Mathematics Teacher. 

1950 302pp. $5.00 

The Macmillan 
60 FIFTH AVENUE, NEW YORK 11, N.Y. 
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@ ADVANCED CALCULUS 

By R. CreicHtTon Buck, University of Wisconsin. International Series in Pure 
and Applied Mathematics. 432 pages, $8.50 

An excellent graduate text for math majors, presupposing mastery of basic cal- 
culus and some differential equations. It gives a systematic and modern approach 
to the differential and integral calculus of functions and transformations, and de- 
velops analytical techniques for attacking some of the typical problems which 
arise in applications of mathematics. Without retracing already familiar ground, it 

reviews elementary calculus with rigor. Includes 450 exercises. 

DIFFERENTIAL AND INTEGRAL CALCULUS 

By Ross R. Mippiemiss, Washington University. Second Edition. 505 pages, 

$4.75 

Intended for beginning courses, this text is unique in that it maintains a high 
degree of accuracy, while still exceptionally clear and readable. It offers the stu- 
dent a real understanding of the principal concepts of the subject, with each funda- 
mental idea developed in a manner which encourages the student to give it calm 
and deliberate consideration. Special attention is given to topics which are in- 
herently difficult. 

CALCULUS 

By C. R. Wy, Jr, University of Utah. 554 pages, $6.00 

Professor Wylie covers all the material traditionally taught in a first-year course 
in calculus, including a review of solid analytic geometry and an introduction 
to ordinary differential equations. Completely worked examples emphasizing 
formulation from mathematical or physical principles and interpretation of 
results, as well as manipulation are included. Introductory and summary para- 
graphs in each chapter make the material easy to follow. 

ADVANCED ENGINEERING MATHEMATICS 

By C. R. Wyte, Jr., 640 pages, $8.00 

Provides an introduction to those fields of advanced mathematics which are cur- 
rently of engineering significance. Covers such topics as ordinary and partial 
differential equations, Fourier series and the Fourier integral, vector analysis, 
numerical solution of equations and systems of equations, finite differences, least 
squares, etc. Relationships of various topics are emphasized. 

Send for copies on approval 

McGraw - Hill Book Company, Inc. 
330 West 42nd Street New York 36, N.Y. 

GEORGE BANTA COMPANY, INC., MENASHA, WISCONSIN, U.S.A. 
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